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The scientific community is experiencing two major trends with respect to software: (1)

software is increasingly pervasive in all disciplines of science, and (2) the scale of that software

— in virtually every sense of the word — is growing as well. This was echoed in a 2018 survey of

scientist-developers by Pinto et al., who found that 82% of respondents felt that they were

spending spending "more time" or "much more time" developing software than they did 10

years agow. It has been argued that the future of science is equal parts computational,

empirical, and theoretical121, and that the demand for software can no longer be met by

individuals working in isolation131. That naturally leads to the question of sustainability: can

something so important and so central to scientific practice be made to endure?

It's worth noting that the problem of software sustainability is not unique to the scientific

software community. Software has "eaten the world": modern life has come to depend on

software in much the same way that it depends upon electricity, running water, or roads and

bridges. However, our ability to engineer enduring software infrastructure has not yet reached

a comparable level of maturity, with technology visionaries like Vint Cerf warning of a "a brittle

and fragile future'441. These concerns have spurred a steadily growing movement within the

software engineering community around sustainability, with the 2014 Karlskrona Manifesto for

Sustainability Design being emblematic of the trend151. To be brief, the emerging consensus on

software sustainability is that it is a wicked problem.

The concept of a wicked problem is taken from the field of policy studies, formally introduced

by researchers Rittel and Webber in 1973 in their foundational work titled Dilemmas in a

General Theory of Planning[61. Wicked problems are a class of problems for which there can be

no single definition, no isolatable cause, no single solution, no stopping rule (that is, no "done"

state), no ultimate test of the quality of a solution, and for which every instance is essentially

unique and novel.

In this view, rather than looking at sustainability as a singular problem that can be "solved",

sustainability is best understood as an ongoing state of affairs. It's a reflection of our priorities,

practices, and policies, and it's a challenge that demands a full spectrum response to both the

software and the culture that creates it. For this reason, the Karlskrona Manifesto divides

sustainability into five dimensions: individual, social, environmental, economic, and technical.

Moving the needle on scientific software sustainability means that we have to identify the

dimensions where we can apply effort and get results. Here I will focus on sociotechnical axis;

that is, the scientific software community (the social), the ecosystem of their software (the

technical), and the interactions between the two.

At the start of this paper, I mentioned the trend towards increasing "scale" in scientific

software, but I left the term open to interpretation. Scale in software operates on many
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different levels: the number of lines of code, the number of hardware and software elements

involved, or the number of people developing it — to name a fewm. But what does it mean for

scientific software to be "large-scale"? Of all these interpretations, I believe the most salient

measure is a sociotechnical one. To borrow from Moe et al., the hallmark of large-scale

software is that no one person can know everything181. This is a threshold is reached much faster

for scientific software than for software in other fields: extensive expertise is needed both to

create and use it, and the scope of expertise involved increases dramatically in complex,

collaborative projects.

Given that no one can know everything, using someone else's code is an exercise in trust, trust

that the code can perform its intended function both now and in the future. Science cannot

happen without informed trust — how can we trust our results if we cannot trust our

instruments? — and not having it puts a tax on the whole community. When scientists misuse

software without understanding how it actually works[91, when a team decides to roll their own

implementation of an algorithm rather than rely on a hard-to-use or fragile third party library,

or when a decision maker is unduly limited in her ability to trust the conclusions of a

simulation[1°I, we are paying that tax.

Sustainability is a wicked problem, and wicked problems demand multilateral interventions. I've

identified one angle of attack that connects the social and technical dimensions of the problem;

a sustainable future for scientific software requires a mature, trustworthy ecosystem and a

community of practice that supports effective, cross-cutting collaboration on software.

Directions for future work include the following:

• Strategies to build more cohesive scientific software teams and organizations.

Raybourn et al. have advanced arguments for a Team of Teams approach to support

integrative scientific software collaborations1111. Along similar lines, Milewicz and

Raybourn have suggested empowering knowledge brokers, cultivating organizational

awareness, and encouraging integrative work as methods to overcome sociotechnical

barriers1121. These are just a few examples — there are a wealth of good ideas out there —

but what we need now is to put these ideas to the test to discover what works well.

• Methods to improve scientific software as a material for communication. Gewaltig and

Cannon have highlighted the distinction between research-ready and user-ready

scientific software[131; software can be ostensibly trustworthy yet too unintuitive or

complicated for others to make good use of it. The value of scientific software is tied to

its usability, that is, our ability to pick it up and put it to work answering scientific

questions; to this point, works by List et al. and Ramakrishnan and Gunter have stressed

the need for user engagement in scientific software development11411151. Similarly, recent

work by Milewicz and Rodeghero argues that usability engineering techniques, such as

cognitive walkthroughs and task analyses, can help bridge that divide[161. Given that

developers are unlikely to find funding for usability work until they have well-defined

methods, clear goals, and measurable outcomes, there is a need for more foundational

research in this area.
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