
Ariadne
Hybridizing Directed Model Checking and Static

Analysis

Reed Milewicz
Sandia National Laboratories

Albuquerque, New Mexico 87123

Email: rmilewi@sandia.gov

Peter Pirkelbauer
Department of Computer and Information Sciences

University of Alabama at Birmingham

Birmingham, Alabama 35223

Email: pirkelbauer@uab.edu

Abstract—While directed model checking has proven to be a
powerful tool in the fight against concurrency bugs, scalability
remains a concern due to the combinatorial explosion in size
of the state space. Overcoming that combinatorial explosion re-
quires the selection and/or parameterization of meta*-heuristics,
but we are left with a persistent problem of having to provide
or compute specialized knowledge of the program under consid-
eration, and this limits the practical value of the technique. To
circumvent that, this paper investigates directed model checking
as a platform for the synthesis of results from other analyses. We
introduce an open-source tool, Ariadne, which translates reports
of suspected race conditions of a static analyzer (Petablox) to
instrumentation using a source-to-source compiler (ROSE) that
can be exploited by a model checker (Java Pathfinder). We detail
the algorithm used, present experimental results, and outline
directions for future research.

Index Terms—model checking, heuristics, static analysis, race
detection

I. INTRODUCTION

One of the greatest obstacles to widespread adoption of

directed model checkers is that they are heavy-weight tools

that require significant human labor in order to render tractable

results, as heuristics require design, selection, and parameter-

ization. We call to mind Engler and Musuvathi 2004, a report

on the use of model checkers that found that for the sake of

scalability and ease of use, a model checker should “require

as little input, annotations, and guidance as possible”[1]; if

effective use of model checking technology proves too burden-

some, programmers will forego its use. The need for human

intervention is, by far, the most expensive form of invisible

technical debt, that is, a resource cost that is deferred by the

design of our bugfinding solution. To circumvent this problem,

our work focuses on hybridizing model checking with static

analysis. Oftentimes, a software development team will use

multiple verification tools to test the correctness of their code,

including analyses of source code, byte code, execution traces,

comments, documentation, and formal specifications. Each of

these analyses give us a window into the overall behavior

of the program, and by incorporating these tools into the

development lifecycle, the technical debt of relying on outside

information has already been paid; by not taking advantage of

this free credit, the model checker spends a significant amount

of time rediscovering what has already been known.
On the other hand, if the foreign analysis could find the

bugs efficiently and without fail, then we would have no

need for the model checker; we expect our priors to either be

imperfect (i.e. imprecise, unsound) or incomplete. In our case,

as a complement to directed model checking, the soundness

and scalability of static analysis are attractive, but we are

forced to contend with its shortcomings. A survey by Mamun

et al.[2], which compared the effectiveness of four different

static analysis tools at finding Java concurrency bugs, showed

that bugs were only detected 25.25% of the time on average.

A separate, similar study of three tools by Kester et al.[3]

measured a 31.62% detection rate. Moreover, true positives

can be hidden amongst false positives: Mamun et al. found a

41.6% false positive rate, and Kester et al. 24.07%. Moreover,

designing a scheme to translate that knowledge into a heuristic

form is non-trivial. As a way of exploring this topic, and

to build a foundation for future work, this paper introduces

Ariadne, an algorithm and an experimental toolchain that

hybridizes pure static analysis with directed model checking.

Our contributions are as follows:

1) An algorithm for automatically mapping reports from a

static analyzer of suspected race conditions to executable

annotations using a source-to-source compiler.

2) A multi-objective heuristic function that leverages the

dynamic annotations to inform the state space search.

3) A completely open-source toolchain that implements

these algorithms.

The remainder of this paper is laid out as follows. In §II,
we cover related work. In §III, we discuss the algorithms used

by Ariadne and how they are realized. In §IV, we conduct

experiments to demostrate the effectiveness of our approach

in a rigorous way. Finally, in §V, we summarize our findings

and outline a road map for future research.
The Ariadne analysis pipeline is built upon three dif-

ferent open-source frameworks: Petablox, ROSE, and Java

Pathfinder. We shall introduce them here.
Petablox[4] is a program analysis platform for Java that

originated with the doctoral work of Mayur Naik in 2008[5].

10th IEEE International Conference on Software Testing, Verification and Validation

978-1-5090-6031-3/17 $31.00 © 2017 IEEE

DOI 10.1109/ICST.2017.49

442

Petablox provides a dazzling variety of off-the-shelf static and

dynamic analyses, including concurrency analyses for finding

races, deadlocks, and atomicity violations.

ROSE[6], developed at the Lawrence Livermore National

Laboratory (LLNL), is a source-to-source translation infras-

tructure for multiple languages, including C/C++, Fortran

77/95/2003, Java, and UPC.

Java Pathfinder is a fully configurable execution environ-

ment for Java bytecode programs developed by the NASA

Ames Research Center and first released in 2005[7]. Java

Pathfinder originated as a stateful, directed model checker but

also supports numerous modes of execution and extensions for

different kinds of analysis.

II. RELATED WORK

There have been several works that have used static analysis

to help prune the state space. Brat and Visser 2001[8] pair

static analysis with JPF to perform on-the-fly partial order

reduction. Visser et al. 2003[9] build on that earlier work and

use static analysis to perform static slicing, partial evaluation,

and partial order computation. Along these lines, research

has been done to use model checking to isolate and explore

portions of the input program in order to refine the results

of a static analysis. Post et al. 2008[10] combine abstract

interpretation (Polyspace) with the CMBC model checker to

automatically eliminate false positives from the results of

the static analyzer. More recent work in the vein of Post

et al. can be seen in Darke et al. 2012[11] and Muske and

Khedker 2015[12]. Another avenue of research has been to

develop a collaborative framework for static analysis and

model checking, so that we can make trade-offs between

the efficiency of static analysis and the precision of model

checking. Beyer et al. 2007[13] use the BLAST model checker

to perform composite analysis alongside shape analysis and

pointer analysis. Chen and MacDonald 2008[14] demonstrate

a bi-directional scheme for collaboration between a static

analysis tool (Soot) and a model checker (JPF).

These works overlap with ours in their premises, but differ

from ours in their methodologies and goals. Like Brat and

Visser 2001 or Visser et al. 2003, we aim to use static analysis

to improve upon the capabilities of model checking, but our

work focuses on producing more informed heuristics rather

than on reducing the size of the state space. Likewise, as

with works such as Post et al. 2008, we assume that the

results of the static analyzer cannot be fully trusted due to

the presence of false positives, but unlike those works, our

goal is to refine the performance of the model checker rather

than the static analyzer. Work analogous to ours has been

done to merge model checking with dynamic analysis. Groce

and Joshi 2008[15] use source-to-source instrumentation using

the CIL framework to add instrumentation to extend the

functionality of the SPIN model checker with run-time checks.

More recently, Milewicz and Pirkelbauer 2016[16], illustrates

an approach for combining model checking with execution

trace mining to inform heuristic search.

III. IMPLEMENTATION

We shall provide an overview of Ariadne. First, a concurrent

program P is passed to Petablox, which performs static

analyses and highlights potential race conditions. Ariadne

extracts from the bug reports the paths through the call graph

of P that lead to the suspected violations. Ariadne then passes

P to ROSE, which parses the input program to produce an

internal intermediate representation (IR), including a detailed

abstract syntax tree (AST). Ariadne instruments race-relevant

code paths with callable annotations; the AST is then unparsed

by ROSE, giving us our instrumented program P ′.
We then pass P ′ to JPF for in-depth analysis. During run-

time, calls to annotations allow Ariadne to track the progress of

different threads through the code. Using this information, our

heuristic function encourages JPF to schedule threads which

are most likely to cause a suspected race condition when

running in concert.

In this section, we describe each of these steps in depth.

A. Performing Static Analysis using Petablox

For two read/write instructions insti, instj ∈ I where at

least one is a write operation, a race condition is declared by

Petablox if the following conditions are met:

1) insti reachable from the thread-root of a thread ta, and

instj is reachable from the thread-root of a thread tb. To

determine this, Petablox performs call graph analysis.

2) insti and instj can access the same memory location

shared by ta and tb. This is decided by may-alias

analysis and thread-escape analysis.

3) ta and tb are able to execute insti and instj in parallel.

Petablox determines this through may-happen-in-parallel

analysis. Along with this, Petablox also performs con-

ditional must-not alias analysis to confirm that ta and

tb are not prohibited from executing the instructions in

parallel due to any common locks.

As a guiding example, in Fig. III-A we present a simple race

condition involving a shared global variable. The client class

A instantiates threads (not shown) that call methods A.foo

and A.bar, which call a library class B. The use of the

synchronized keyword on B.baz ensures that a happens-

before relationship exists between any concurrent calls to that

method, but they do not order concurrent calls to other, non-

synchronized methods. Because threads in A call B.baz and

B.qux concurrently, it is possible to have unsynchronized

updates to the shared variable B.x.

For our purposes, a race condition is represented as rid =
(lhsid, rhsid), a 2-tuple where lhsid = linstr1...linstr‖lhsid‖
and rhsid = rinstr1...rinstr‖rhsid‖ are lists of instructions

that lead to a conflicting pair of accesses to shared memory,

which we will refer to as the left-handed and right-handed

paths respectively. We note that this distinction between the

two is arbitrary and is merely used here as an explanatory aid;

(lhsid, rhsid) and (rhsid, lhsid) would represent the exact

same race. Parsing each race condition report produced by

Petablox gives us our set of race conditions R = r1...r‖R‖.

443

Listing 1. class A (Client)
public static void foo(){B.baz(false)}
public static void bar(){B.qux()}

Listing 2. class B (Library)
private static int x = 0;
public static synchronized void baz(boolean flag){

if(flag)
x++;

else
B.norf();

}
private static void norf() { B.baz(true) };
public static void qux(){x−−;}

Listing 3. Petablox Bug Report
Possible race condition detected!
Path of abstract thread #1:

A.foo() in Thread.run()
B.baz(false) in A.foo
x++ in B.baz

Path of abstract thread #2:
A.bar() in Thread.run()
B.qux() in A.bar
x−− in B.qux

Fig. 1. A contrived example of a race condition between client threads calling
into a common library. Concurrent calls to A.foo and A.bar can result in
a race condition due to improper synchronization over accesses to B.x. Note
that because the analysis is context-insensitive, Petablox reports the shortest
path to the violation irrespective of inputs (e.g. x++ is only reachable through
B.norf.)

B. Converting Petablox Reports to Annotations

To encode race condition information, for each scope con-

taining code relevant to any race condition, we compute

two relevancy matrices Menter,Mexit ∈ R
2∗‖R‖x2∗‖R‖ . A

relevancy matrix is an incidence matrix defined over the set

of all paths reported to Petablox that lead to race conditions.

The intent of Menter and Mexit is two-fold. First, for a

thread entering or exiting an annotated scope, they estimate the

“distance” of that thread to code that is suspected to cause a

race condition, and second, they communicate the relevance of

that thread executing that code to threads following opposite-

handed paths towards suspicious code (with the understanding

that we need both threads to reach their respective targets in

order to produce the violation). We shall now explain how

these matrices are composed.

For a given scope b ∈ Vblocks, for each individual race

(lhsi, rhsi) ∈ R, we compute a block matrix Bb
i of the form

Bb
i =

[lhs rhs

lhs 0 v(b, lhs0)
rhs v(b, rhs0) 0

]
(1)

which encodes the relevance of a thread being in b with

respect to race condition ri, with Bb
i lhs,rhs being the relative

position of a thread in b on the path lhs and its relevance to a

thread on path rhs, and Bb
i rhs,lhs being the relative position

of a thread in b on the path rhs and its relevance to a thread on

path lhs. The function v is our value function, and is defined

as

Fig. 2. A visual diagram describing the instrumentation process as applied
to our example program. Statements in the paths belonging to the race are
mapped to statement nodes in the AST. Ariadne traverses back up the tree to
find the scopes enclosing the statement, and calculates the relevancy matrices
using the process described in §III-B.

v(b, path) =

{
path.index(b)

path.length
if b ∈ path

0 otherwise
(2)

For example, for a race condition ri that involves the scope

b, Bb
i =

(
0 0.25

0.75 0

)
means that a thread currently in scope b

is 25% of the way towards reaching the end of the left-handed

path of ri and 75% of the way towards reaching the end of

the right-handed path of ri. Note that this is a rough estimate

because the underlying analysis is context-insensitive; we do

not know the true distance.

Next, by taking the direct sum of these block matrices, we

get

M b
race = ⊕‖R‖i=0B

b
i =

⎡
⎢⎢⎢⎢⎢⎣

lhs0 rhs0 ... lhs‖R‖ rhs‖R‖

lhs0 0 v(b, lhs0) 0
rhs0 v(b, rhs0) 0

...
. . .

lhs‖R‖ 0 v(b, lhs‖R‖)
rhs‖R‖ 0 v(b, rhs‖R‖) 0

⎤
⎥⎥⎥⎥⎥⎦ (3)

which is our relevancy matrix for the scope. Note that

because the matrix is tridiagonal and the leading diagonal is

all zeroes, in the actual implementation the relevancy matrix

can be stored as two 1D-arrays of length ‖R‖.
C. Instrumentation of Source Code

After receiving the bug report from Petablox and parsing

the XML documents to extract the race condition records R =
r1...r‖R‖, Ariadne parses the source code of P using ROSE to

get the AST. The lists of statements belonging to each race are

mapped to corresponding statement nodes within the AST. To

allow for selective instrumentation, statements with missing

statement nodes are omitted. For example, we may perform

static analysis on a library A that calls a library B, and if we

detect potential bugs in B alone, we may want to craft our

own test harness to analyze B exclusively. If we only pass B
to ROSE, then path elements related to A are automatically

excised.

Next, Ariadne traverses up from each statement node to

get the enclosing scopes. For each scope, we compute the

relevancy matrices and attach the annotation records to that

444

Listing 4. class A (Client)
public static void foo(){

float[] rmatrix foo enter = {{0.333},{0.0}};
Ariadne.annotate(rmatrix foo enter);
B.baz(false);
float[] rmatrix foo exit = {{0.0},{0.0}};
Ariadne.annotate(rmatrix foo exit);

}
public static void bar(){

float[] rmatrix bar enter = {{0.0},{0.5}};
Ariadne.annotate(rmatrix bar enter);
B.qux()
float[] rmatrix bar exit = {{0.0},{0.0}};
Ariadne.annotate(rmatrix bar exit);

}

Listing 5. class B (Library)
private static int x = 0;
public static synchronized void baz(boolean flag){

float[] rmatrix baz0 enter = {{0.666},{0.0}};
Ariadne.annotate(rmatrix baz0 enter);
if(flag) {

float[] rmatrix baz1 enter = {{1.0},{0.0}};
Ariadne.annotate(rmatrix baz1 enter);
x++;
float[] rmatrix baz1 exit = {{0.5},{0.0}};
Ariadne.annotate(rmatrix baz1 exit);

} else
B.norf();

float[] rmatrix baz0 exit = {{0.333},{0.0}};
Ariadne.annotate(rmatrix baz0 exit);

}
private static void norf() { B.baz(true) };
public static void qux(){

float[] rmatrix qux enter = {{0.0},{1.0}};
Ariadne.annotate(rmatrix qux enter);
x−−;
float[] rmatrix qux exit = {{0.0},{0.5}};
Ariadne.annotate(rmatrix qux exit);

}

Fig. 3. Our example program post-instrumentation.

node. This process is illustrated in Fig. 2 as it applies to the

example code we provided in Fig. III-A.

Ariadne then makes a final pass over the AST to instrument

all labeled scopes. To each scope, we prepend and append (1)

a uniquely-named, statically-declared array variable that holds

the relevancy matrix and (2) a call to a custom library method

Ariadne.annotate() to which we pass the array variable.

Normally, this means inserting the instrumentation at the start

and end of a basic block, but if the race-relevant code occurs

within a branch statement (e.g. the conditional of a for loop),

the instrumentation is instead inserted just before and after

the branch. Ariadne then concludes this process by adding

an import statement for Ariadne’s run-time library. Finally,

the AST is unparsed by ROSE to give us our instrumented

program P ′ which is now ready to be analyzed with JPF (see

Fig. III-C).

D. Handling of Dynamic Annotations

Calls to Ariadne.annotate() are lightweight dynamic

annotations that announce the caller’s relative position in

the program. The body of the annotate is in fact empty;

the responsibility for tracking these calls falls to JPF. JPF

provides an Observer pattern implementation that allows users

to attach listeners to the search routine and to the JVM to

observe and interact with the model checker during execution.

Many important routines, such as race detection and deadlock

detection, are implemented as listeners. To track annotation

calls, Ariadne attaches an AriadneListener instance to

JPF prior to execution. This listener performs the following

functions:

1) Whenever a thread is created, the listener attaches an

annotation to the ThreadInfo object associated with

that thread in the current state. This annotation will hold

the last known relevancy matrix for that thread (initially

a zero matrix). The annotation is made inheritable such

that the thread will carry the annotation with it as JPF

generates and stores subsequent states.

2) Whenever a thread calls the Ariadne.annotate()

method, the listener intercepts the call and captures

the argument, a new relevancy matrix. The annotation

associated with the thread is updated to contain this new

relevancy matrix.

Annotating the threads directly, as opposed to storing the

annotations in a separate metadata facility, is advantageous

for two reasons. First, always having the most recent relevancy

data on hand means that it can be fetched in constant time.

Second, whenever we need to backtrack to a previous state,

there is no need to recalculate or roll back the annotation

history for a thread. This solution does add to the memory

overhead, but only by a fixed 2 ∗ ‖R‖ ∗Nthreads ∗ 32 bits per

state (assuming single precision arithmetic is used) for storing

the relevancy matrix.

E. Defining the Heuristic
Assume that at timestep i we reach a state Si from the start

state S0 through transitions Tr0..T ri, and we have a series

of unexplored transitions Trnew0 ..T rnewN to choose from, with

one transition for each of our currently active threads t0..tN .

To control the cost of performing our heuristic, we borrow an

idea from Groce and Visser 2002[17] and set a window of size

limit on the path, giving us a set of transitions Tri−limit..T ri,
which we call our history.

For an arbitrary candidate transition Trnext and its associ-

ated thread tnext, we have a relevancy matrix Mnext stored

in Si. To measure the relevance of tnext to threads previously

scheduled in the history, we want to compare their relevancy

matrices Mi−limit..Mi−1 against the candidate. For example,

if Mk has a high value for the entry lhs0, then tk would want

tnext to have a high value for rhs0 in Mnext.
To do this, we first sum together all of the matrices of the

preceding threads. We will call this result Mpred. We then

take the Hadamard product of MT
pred and Mnext. This means

that lhs values of Mnext are multiplied by the rhs values

of Mpred, and vice versa; this gives us our result, Mpriority.

Finally, we extract and sum the diagonals to form a vector of

length ‖R‖. That is,

Hpriority(path, limit) = 〈lhsi + rhsi : lhsi, rhsi ∈Mpriority〉
(4)

445

Mpriority = MT
pred ◦Mnext (5)

Mpred =

⎛
⎝ path.length∑

i=path.length−limit

path.get(i).getRMatrix()

⎞
⎠ (6)

Mnext = path.get(path.length− 1).getRMatrix() (7)

Each element in the output vector is a measure of the

preference of recently scheduled threads for the candidate

tnext according to the codepath(s) that the thread is on. In

other words, each element represents an independent heuristic

that measures proximity to a reported race condition. To

combine these heuristics, we can employ a multiobjective

search strategy, which is an extension of scalar graph search to

support vector-valued costs[18]. We divide the search problem

into multiple sub-problems that can be solved independently;

we introduce a partition function that splits a vector input into

multiple sub-vectors, each of which can serve as the basis for

a separate search. These instances can be run sequentially,

in parallel on the same machine, or distributed across a

cluster. For this work, we employ static (non-communicating)

partitioning, a topic which has been previously explored in

Staats and Păsăreanu 2010[19].

IV. EVALUATION

In our preliminary experiments, we found that Ariadne

delivered optimal or near-optimal results when tested on com-

monly used concurrency bug benchmarks. However, tempting

as it was to claim improvements by up to a factor of 180, we

concluded that these results were not a fair representation of

our algorithm. The majority of these benchmarks are concur-
rency error kernels, deliberately simple programs that express

quintessential varieties of concurrency bugs. With respect to

our approach, these benchmarks are mercifully easy: there is

usually only one code pair that can cause a race condition, the

programs are small enough that there is little else that could

trigger false positives, and both the inputs and the control

structure of the programs are relatively simple.

For these reasons, we turn our attention to de novo concur-

rent program generation. Notable recent research on this topic

is that of Steffen et al. 2014[20], who have provided a practical

model for generating concurrent benchmarks based on LTL

synthesis and translation of labeled transition systems (LTS)

to equivalent code. In a similar vein, we developed a ROSE-

based tool for randomly generating concurrent Java programs

that contain race conditions.

Our program generation method uses the Boost Graph

Library (BGL)[21] to construct a graph which we treat as

an LTS. A node translates to a method in our concurrent

library, and a directed edge indicates that the method calls

another method. In order to simulate input and control flow

non-determinism, we make use of JPF’s Verify library to

non-deterministically choose which edge a thread will take.

Fig. 4. Histogram of the results of the branching factor experiment across
all 400 benchmarks tested. The lower bound on the improvement of Ariadne
over BFS was a 17.89% reduction in states explored, and the upper bound
was 83.81%, with a median of 27.75%.

To this graph, we add labels to nodes that represent read

and write methods on shared memory. These methods can

either be unguarded or guarded by locks whose identifiers

are obfuscated. Petablox flags both the true and false positive

cases as potential race conditions, and Ariadne supplies us

with paths through the graph to reach those violations.

Our experiments were performed on an Intel 20-core Phi

with 130 GB of RAM running Java 7, with the most recent

version of Java Pathfinder.

In our first set of experiments, we examine the sensitivity

of our approach to increasing complexity of the control flow.

To do this, we generate perfect n-ary trees of fixed depth

(3) and we vary the branching factor. We embed a single

unsynchronized read and write pair at two randomly chosen

leaves. In our benchmark, we dispatch a fixed number of

threads (4) at the root. We compare the search performance of

A* search plus Ariadne vs. an uninformed, breadth-first search

as the branching factor increases from 3 to 6, by testing on

100 benchmarks each time. For this experiment, we measure

the total number of states explored to find a bug (as a proxy

for time/space costs).

For our second set of experiments, we consider the interplay

of having many different race conditions and different mixtures

of true and false positives. We consider a tree of fixed depth

(6), branching factor (2), and number of threads (4). We

introduce three false positives and one true positive, and we

consider the effects of partitioned searches from size 2 to 4.

We do this to simulate a partitioned, multiobjective search.

For example, Petablox may hint at some 60 different race

conditions, and we may not have the resources needed to carry

out 60 different parallel searches. However, through static

partitioning, we can reduce that number to 20 searches with

partition size three or 15 searches with partition size four, with

partitions ordered lexicographically.

A. Results

We begin by examining the results of the synthetic bench-

mark tests. First, we look at the branching factor tests. Since

relevancy information is only updated when a thread reaches

an annotated block of code, there can be many intervening

unlabeled blocks that “inherit” the relevancy values of the

446

last annotation. In these benchmarks, a thread executing any

descendant of an annotated interior node is given at least as

much priority as a thread entering that annotated node, even

though only a fraction of those descendants are actually on

the path to a race. The concern then is that the information

we receive from the static analyzer may be too imprecise

to be helpful in our search. While this is guaranteed to be

problematic for greedy search, we find that this concern is

over-stated for Ariadne under A* search.

On average, Ariadne and BFS find the bug in the 3-ary case

after exploring 1650 and 2561 states respectively, 3586 and

5750 in the 4-ary case, 6784 and 11083 in the 5-ary case, and

11915 and 19067 in the 6-ary case. As can be seen in Fig. 4,

the median improvement in performance held steady at around

27.75% (an average reduction by a factor of 1
e). These results

were independent of our choice of branching factor, and the

distribution of performance gains is virtually identical in all

cases. In terms of time and space performance, this translated

to a 54% reduction in execution time with negligible space

overhead introduced by the recording of annotations (e.g. 20

megabytes out of 2 gigabytes).

Next we consider the partitioning experiments. On the

benchmarks we tested, the average partitioned search involving

the sole true positive found the bug 11.12% slower for parti-

tions of size 2, 7.72% slower for partitions of size 3, and 9.16%

slower across all partitions of size 4. That is, we witnessed a

slightly lower overhead when we increased the partition size,

even though an increase in partition size means that, in the

average case, we are less likely to pursue the true positive

early. False positives slow the search, but we are refunded to

the extent that false positive paths overlap with true positive

paths.

V. CONCLUSION AND FUTURE WORK

In this work, we have introduced Ariadne, an algorithm and

toolchain for improving race condition detection by directed

model checking via static analysis. Ariadne uses ROSE to

translate race condition reports from Petablox to dynamic

metadata annotations that guide Java Pathfinder towards sus-

pected violations. The central challenge is that while the static

analysis is inexpensive, it can detect an abundance of potential

race conditions, many of which can be misleading false pos-

itives. Our results have shown that through a combination of

multiobjective and parallel search, Java Pathfinder can leverage

this information at scale, delivering significant improvements

in performance. Moreover, Ariadne is merely the beginning:

the approach we have proposed can be readily extended to

incorporate arbitrarily many different analyses. We believe

that using directed model checking as a platform for unifying

analyses will make it substantially easier for developers to

understand and validate the semantics of concurrent code.

VI. ACKNOWLEDGEMENTS

This project is supported by the National Science Founda-

tion under grants CNS-0821497 and CNS-1229282.

REFERENCES

[1] D. Engler and M. Musuvathi, “Static analysis versus software model
checking for bug finding,” in Verification, Model Checking, and Abstract
Interpretation. Springer, 2004, pp. 191–210.

[2] M. A. Al Mamun, A. Khanam, H. Grahn, and R. Feldt, “Comparing
four static analysis tools for java concurrency bugs,” in Third Swedish
Workshop on Multi-Core Computing (MCC-10). Chalmers University of
Technology, 2010.

[3] D. Kester, M. Mwebesa, and J. S. Bradbury, “How good is static
analysis at finding concurrency bugs?” in Source Code Analysis and
Manipulation (SCAM), 2010 10th IEEE Working Conference on. IEEE,
2010, pp. 115–124.

[4] R. Mangal, X. Zhang, A. V. Nori, and M. Naik, “A user-guided approach
to program analysis,” in 23rd Symposium on Foundations of Software
Engineering, 2015.

[5] M. Naik, A. Aiken, and J. Whaley, Effective static race detection for
Java. ACM, 2008, vol. 41, no. 6.

[6] D. Quinlan, “Rose: Compiler support for object-oriented frameworks,”
Parallel Processing Letters, vol. 10, no. 02n03, pp. 215–226, 2000.

[7] W. Visser, C. S. Psreanu, and S. Khurshid, “Test input generation with
java pathfinder,” ACM SIGSOFT Software Engineering Notes, vol. 29,
no. 4, pp. 97–107, 2004.

[8] G. Brat and W. Visser, “Combining static analysis and model checking
for software analysis,” in Automated Software Engineering, 2001.(ASE
2001). Proceedings. 16th Annual International Conference on. IEEE,
2001, pp. 262–269.

[9] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model checking
programs,” Automated Software Engineering, vol. 10, no. 2, pp. 203–
232, 2003.

[10] H. Post, C. Sinz, A. Kaiser, and T. Gorges, “Reducing false positives
by combining abstract interpretation and bounded model checking,” in
Proceedings of the 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering. IEEE Computer Society, 2008, pp.
188–197.

[11] P. Darke, M. Khanzode, A. Nair, U. Shrotri, and R. Venkatesh, “Precise
analysis of large industry code,” in Software Engineering Conference
(APSEC), 2012 19th Asia-Pacific, vol. 1. IEEE, 2012, pp. 306–309.

[12] T. Muske and U. P. Khedker, “Efficient elimination of false positives
using static analysis,” in Software Reliability Engineering (ISSRE), 2015
IEEE 26th International Symposium on. IEEE, 2015, pp. 270–280.

[13] D. Beyer, T. A. Henzinger, and G. Théoduloz, “Configurable software
verification: Concretizing the convergence of model checking and pro-
gram analysis,” in Computer Aided Verification. Springer, 2007, pp.
504–518.

[14] J. Chen and S. MacDonald, “Towards a better collaboration of static and
dynamic analyses for testing concurrent programs,” in Proceedings of
the 6th workshop on Parallel and distributed systems: testing, analysis,
and debugging. ACM, 2008, p. 8.

[15] A. Groce and R. Joshi, “Extending model checking with dynamic
analysis,” in Verification, Model Checking, and Abstract Interpretation.
Springer, 2008, pp. 142–156.

[16] R. Milewicz and P. Pirkelbauer, “Refinement of structural heuristics for
model checking of concurrent programs through data mining,” Computer
Languages, Systems & Structures, vol. 45, 2016.

[17] A. Groce and W. Visser, “Model checking java programs using structural
heuristics,” in ACM SIGSOFT Software Engineering Notes, vol. 27,
no. 4. ACM, 2002, pp. 12–21.

[18] B. S. Stewart and C. C. White III, “Multiobjective a*,” Journal of the
ACM (JACM), vol. 38, no. 4, pp. 775–814, 1991.

[19] M. Staats and C. Psreanu, “Parallel symbolic execution for structural
test generation,” in Proceedings of the 19th international symposium on
Software testing and analysis. ACM, 2010, pp. 183–194.

[20] B. Steffen, M. Isberner, S. Naujokat, T. Margaria, and M. Geske,
“Property-driven benchmark generation: synthesizing programs of real-
istic structure,” International Journal on Software Tools for Technology
Transfer, vol. 16, no. 5, pp. 465–479, 2014.

[21] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User
Guide and Reference Manual, Portable Documents. Pearson Education,
2001.

447

