
A Portable Lock-free Bounded Queue

Peter Pirkelbauer, Reed Milewicz, and Juan Felipe Gonzalez

No Institute Given

Abstract. Attaining efficient and portable lock-free containers is chal-
lenging as almost any CPU family implements slightly different memory
models and atomic read-modify-write operations. C++11 offers a memory
model and operation abstractions that enable portable implementations
of non-blocking algorithms. In this paper, we present a first scalable and
portable lock-free bounded queue supporting multiple readers and mul-
tiple writers. Our design uses unique empty values to decouple writing
an element from incrementing the tail during enqueue. Dequeue employs
a helping scheme that delays helping in the regular case, thereby reduc-
ing contention on shared memory. We evaluate our implementation on
a range of architectures featuring weak and strong memory consistency
models. Our comparisons with known blocking designs and another novel
alternative lock-free design demonstrate that the presented implemen-
tation performs well on architectures that implement a weak memory
consistency model.

1 Introduction

FIFO queues are a fundamental data structure for many software systems. Due
to their importance in multi-core computing, bounded and unbounded lock-free
queues have been extensively studied [14][26],[25],[28],[13],[9],[12]. Unbounded
queues use dynamic memory management to store an arbitrary number of ele-
ments. Bounded queues are often implemented as circular buffers with a max-
imum storage capacity. Circular buffers do not require dynamic memory man-
agement and are well suited for embedded devices, real-time systems, operating
systems, and environments demanding low space and performance overhead.
The first concurrent bounded queue for a single reader and a single writer was
described by Lamport [14].

Developing portable nonblocking data-structures is difficult, because the avail-
able read-modify-write operations and implemented memory models differ sub-
stantially across architectures. For example, the x86 processor family features
a fairly strict memory model that only allows the reorderings of loads before
independent store operations [18]. A read-modify-write operation with infinite
consensus number [9] on the x86 are the atomic compare-and-swap (CAS) in-
structions. CAS takes an address, an old value, and a new value. If the address
contains the old value, the content is updated to the new value. CAS returns the
content stored at the address. Modern x86 CPUs offer 32-bit, 64-bit, and 128-bit
wide CAS instructions. ARM and PowerPC implement a weak memory model

that allow reorderings of non-dependent reads and writes. A read-modify-write
operation with infinite consensus number on ARM and PowerPC is the instruc-
tion pair Load-linked/Store-conditional (LL/SC). LL reads a value from a mem-
ory location. SC writes a value to the same location under the condition that no
one has modified that location meanwhile. Many hardware implementations of
LL/SC can spuriously fail under certain conditions, and the SC instruction fails
despite no interleaving store to the memory location occurred.

The 2011 revision of the ISO C++ programming language, C++11 [11][27],
specifies a concurrent memory model. The memory model defines the behav-
ior for data-race-free-0 (DRF0) programs [4]. In order to synchronize access of
shared resources, locks can protect critical regions. The standard lock’s semantics
guarantees that any update to shared memory inside the critical section is visi-
ble to subsequent threads acquiring the same lock. Portable lock-free program-
ming is supported by atomic types. They offer a unified interface to a system’s
read-modify-write operations and fine-grain control over when memory updates
become visible to other threads. In this paper, we will present a lock-free circular
buffer based on C++11’s atomics. Our implementation relies on unbounded coun-
ters, which are available for all practical purposes on any 64bit and many 32bit
architectures (double word atomic operations). A single enqueue operation relies
on two acquire/release operations, a single dequeue operation uses two sequen-
tially consistent operations and two acquire/release operations. An evaluation on
three different architecture families (x86, PowerPC, and ARMv7) demonstrates
the portability and scalability of our circular queue implementation.

The contributions of these paper are: (1) a portable lock-free bounded queue
using the relaxed memory model; (2) performance analysis of multiple bounded
queue implementations on multiple platforms; (3) the lock-free queue uses unique
values to represent empty entries; (4) an ABA-free solution that does not require
free-store management.

The paper is organized as follows: §2 provides background information on
lock-free programming and describes the C++11 concurrent memory model based
on known lock-based bounded queue implementations. §3 discusses our imple-
mentation and §4.4 reasons about its correctness. The performance analysis is
presented in §5. §6 discusses related work and §7 provides a summary and out-
look on future work.

2 Background

Many multi-threaded systems rely on mutual exclusion locks (mutex) to protect
critical sections and shared resources. Deadlock, livelock, priority inversion, and
termination safety pose serious challenges to the design, implementation, and
lifetime of such systems.

2.1 Lock-freedom, Linearizability, and History

Lock-free algorithms avoid those problems by not using locks. Instead they rely
on a set of atomic read-modify-write operations such as CAS and LL/SC. Lock-

free systems guarantee that one out of many contending threads will make
progress in a finite number of steps. This progress guarantee makes lock-free
programs resilient against unexpected thread termination and priority inversion.
The principle correctness condition of nonblocking systems in a sequentially con-
sistent memory model is linearizability [10]. An operation of a concurrent object
is linearizable if it appears to execute instantaneously in some moment of time
between the time point of its invocation and the time point of its response. This
definition implies that for any concurrent execution there must exist an equiv-
alent sequential execution of the same operations. The ordering of operations
in the sequential history has to be consistent with the real-time order of invo-
cation and response in the concurrent execution history. For relaxed memory
models, Batty et al. [2] propose the notion of a history as a semantic correctness
condition. A history records operations and their interactions as defined by the
memory model. Call and return events form multiple partial ordering. An ab-
stract data structure is stated in terms of history between two operations. An
specific data structure implements the abstraction if it can produce the same
history.

The ABA problem [19] is fundamental to many lock-free algorithms and
occurs when a thread T reads value a from a memory location m. Later other
threads set m to b and then back to a. Thread T is unaware of the intermediate
change and its CAS operation to replace a with another value v will succeed
despite the fact that the value was modified in the meantime.

2.2 The C++11 memory model

In this section, we will discuss the use of the C++ memory model based on
available bounded queue implementations [9].

The C++11 distinguishes between data operations and synchronization oper-
ations. Memory locations subject to data races have to be of atomic type. A data
race is defined as two or more concurrent memory accesses to the same memory
location, where at least one of them is a write [23]. Programmers can exercise
fine-grain control over memory ordering by tagging atomic operations. By default
atomic operations use sequential consistency (tag memory order seq cst to estab-
lish a total order among them. The tags memory order release / memory order acquire

form a pair on the stored/loaded value. They guarantees that the reading thread
sees all memory updates in the storing thread that occurred before the store
tagged with release. The memory order release / memory order consume form a
pair on the stored/loaded value. This guarantees that the reading thread sees all
memory updates in the storing thread that occurred before the store and where
there is a dependency to the loaded value. The tag memory order relaxed does not
establish an ordering relationship. The read-modify-write operations CAS and
LL/SC are supported through the atomic operations
compare exchange strong (CASS) and compare exchange weak (CASW). The two
compare exchange operations take a reference to an old value (old), a new value
(val), and two memory ordering tags (succ and fail) for the success and failure
respectively. If the atomic object equals the old-value, compare exchange updates

Fig. 1. Graphical overview

1 struct CircularBuffer {
bool enq(int elem);

3 pair<int, bool> deq();

5 size t tail;
size t head;

7 int buf[N];
};

Fig. 2. Class definition

Fig. 3. Sequential bounded queue

it to the new value and returns true. Otherwise the functions store the current
value in old and return false. Like LL/SC, compare exchange weak can spuriously
fail.

Note, as a consequence of the total order on sequentially consistent opera-
tions, a store becomes visible to all concurrent threads at the same time. Like-
wise, read-modify-write instructions operate on a single, most recent, value of
an atomic memory location. Conversely, loads and stores tagged with relaxed
or release/acquire may not become visible to all threads at the same time [30].
Consider two producers, A and B, that write to variables a and b respectively.
A consumer Y could see the store to a but not b, while another consumer Z
could see the store to b but not a. The ISO C++11 standard guarantees that all
threads see the same modification order of each memory location. In addition, it
stipulates that an implementation must make an atomic store available to other
threads in a finite amount of time. For example, this disallows hoisting of atomic
loads outside of loop bodies.

Descriptions of the C++11 memory model and more subtle details are de-
scribed by the C++11 standard [11], Boehm and Adve [4], and Williams [30].
Table 1 gives an overview of the available tags and sketches their semantics.

2.3 Circular Buffer and the C++11 memory model

The bounded queue in Fig. 3 stores integer values in an array buf. The maximum
capacity of the data structure is given by the constant N. enq adds an element
to the tail; deq reads an element from the head’s position. Both operations enq

and deq are nonblocking, as they return an error code when their preconditions
not-full and not-empty are not met. The diagram in Fig. 1 sketches the data
structure and shows a bounded queue of size 16 containing one element. The
queue is empty when head equals tail and full when head+N equals tail. This
implementation uses unbounded counters for head and tail, which are practically

bool enq(int elem) {
2 if (tail == head+N)

return false;
4 buf[tail%N] = elem;

++tail;
6 return true;
}

Fig. 4. Enqueue

1 pair<int, bool> deq() {
if (tail == head)

3 return make pair(−1, false);
int res = buf[head%N];

5 ++head;
return make pair(res, true);

7 }

Fig. 5. Dequeue

Fig. 6. Sequential bounded queue

Memory Order Relationship among/between operations

seq cst atomic operations are totally ordered
non-atomic operations are partially ordered with respect to sequen-
tially consistent atomic operations on the same thread.

release/acquire form a pair on the stored/loaded value. This guarantees that the
reading thread sees all memory updates in the storing thread that
occurred before the store tagged with release.

release/consume form a pair on the stored/loaded value. This guarantees that the
reading thread sees all memory updates in the storing thread that
occurred before the store and where there is a dependency relation-
ship to the loaded value

relaxed do not establish a relationship other than that a load reads a previ-
ously stored value

Table 1. Memory Order Tags in C++11

available on any 64bit architecture or any 32bit architecture supporting double-
wide CAS.

A concurrent implementation can be derived by adding a mutex per bounded
queue object. Any enqueue and dequeue operation would acquire the lock before
executing the operation. The use of a single lock for all operations avoids data
races on shared data members (i.e., head, tail, buf) by serializing accesses. The
implementation of a standard mutex’ lock and unlock operation guarantee that
any update to the shared state can be consistently observed by any other thread
that acquires the same mutex later. The use of a mutex prevents any true concur-
rency as at any given time there can only be a single thread that executes either
enq or deq. Any concurrent thread will wait until the mutex becomes available.

To attain a higher degree of concurrency, enq and deq could use two distinct
locks. Using two distinct C++11 locks, however, does not establish a proper
ordering of data accesses in enq and deq operations.

The default semantics on atomic memory operations is sequential consis-
tency (the tag’s name is memory order seq cst). This establishes a total order
among all atomic operations that are tagged sequentially consistent. Compiler
and hardware are not allowed to perform any intra-thread reordering on se-

1 bool enq(int elem) {
lock guard guard(enqLock);

3 size t t = tail.load(acquire);
size t h =

5 loadRecent<relaxed>(head);

7 if (t == h+N) return false;

9 buf[t%N] = elem;
tail.store(t+1, release);

11 return true;
}

pair<int, bool> deq() {
2 lock guard guard(deqLock);

size t h = head.load(relaxed);
4 if (h == loadRecent<acquire>(tail))

return make pair(−1, false);
6 int res = buf[h%N];
8 head.store(h+1, release);

return make pair(res, true);
10 }

Fig. 7. Bounded queue allowing concurrent reader and writer

quentially consistent operations. All non-atomic operations are partially or-
dered with respect to the sequentially consistent atomic operations on the same
thread. Maintaining sequentially consistency is particularly expensive on weakly
consistent architectures, such as Alpha, ARM, and PowerPC. Release/acquire
establishes a synchronizes-with relationship between a thread A that stores
a value v to an atomic memory location l and a thread B that loads that
value v from l. Release/acquire (the tags’ names are memory order release and
memory order acquire) guarantees that any operation in thread A that happens
before storing v to l can be observed in B after it has loaded v from l. The
memory model allows reorderings with subsequent operations on the storing
thread and preceding operations on the loading thread as long as the intra-
thread dependencies allow the reordering. Release/acquire establishes a tran-
sitive relationship. Any updates obtained through a operation tagged require
will be made available with a operation tagged release. The C++11 locks use
release and acquire semantics for lock and unlock operations [4]. Thus the single
lock based implementation presented in Fig. 3 guarantees that any updates by
earlier threads to buf, head, and tail can be observed by a thread acquiring
the lock later. On the PowerPC acquire/release can be implemented by a light-
weight barrier [22]. Release/consume consistency is similar to release/acquire
except that it restricts the observability of operations that preceded the store
in thread A to memory locations that depend on the loaded value v in thread
B. The consume tag does not require synchronization instructions on most ar-
chitectures [18]. The relaxed consistency model does not guarantee any memory
ordering and does not establish a synchronizes-with relationship. In addition to
tagging atomic operations, memory operations can be ordered by using memory
fences that can be tagged similarly.

The bounded queue implementation in Fig. 3 can be modified to support a
single concurrent enqueuer and a single concurrent dequeuer.

As the code in Fig. 3 updates buf and tail only in enq and head in deq,
the implementation allows for a single concurrent reader and writer. The key
idea is that enq stores the element before it increments the tail, thereby making
the buffer element available to a concurrent deq operation. Likewise deq copies
the buffer element to a local variable, before it makes the empty memory loca-

tion available to a concurrent enq by incrementing the head. Fig. 7 illustrates
the additional changes for a two-lock implementation under the C++11 mem-
ory model. Note that we abbreviate the memory ordering tags by omitting the
common prefix memory order. Both operations enq and deq use separate locks
named enqLock and deqLock respectively. This change converts the former data
operations on head and tail to synchronization operations. enq stores a value to
tail in Line 10, while deq reads tail in Line 4. Consequently, the type of head

and tail has to be atomic. Since enq and deq use two distinct locks, there is no
more implicit memory order relationship. The acquire and release semantics of
lock and unlock no longer guarantees that a value stored to a buffer location
is in sync with the value loaded from that location, even though the update of
the tail could be observed. Hence, stores and loads of tail use release/acquire
semantics. loadRecent

To load the most recent value of the atomic variable that is not written within
the same critical section (e.g., enq’s load of head in Line 5), both operations use a
faux read-modify-write (RMW) operation encapsulated in a function loadRecent.
The modify-part of the RMW operation will fail, but the read part will return
the most recent value.

The transitive nature of release/acquire guarantees that an update of tail

to x makes all buffer stores up to location x−1 observable to other threads that
read x from tail. deq’s loads of head uses relaxed memory ordering, because
the acquisition of deqLock guarantees that the last store to head is visible. deq’s
store operation incrementing head uses release semantics to prevent reordering
with loading the value from the corresponding buffer location. Note that buf

does not need to be atomic, as there exists no data race on a specific buffer
element. enqLock prevents two concurrently executing enqueues and synchronizes
two consecutive enqueues. No data race involving two stores exists. deq cannot
read an element at location x before a corresponding enq has updated the tail

to point to location x+1. The acquire/release semantics on tail guarantees that
the update to buf[tail] and the increment of tail are observed in order. This
prevents data races involving a load and a store.

Other read-modify-write operations such as fetch add also exist. Whether
the manipulation of a specific type is lock-free can be tested with the member
function (bool is lock free()).

3 Design and Implementation

The major challenges for the design of a lock-free bounded queue are: (1) an
enqueue operation has to update the buffer location and the tail seemingly
atomically. (2) Since the bounded queue’s storage is reused, delayed threads
are prone to the ABA problem. Software solutions exist in the form of multi
compare and swap (MCAS) [5]. MCAS relies on a bit to distinguish a regular
value from a descriptor object. In a first phase, MCAS replaces all affected
memory locations with a descriptor object specifying old-values and new-values
for all M memory locations. If this succeeds, MCAS exchanges the descriptor

// work in progress data
2 struct WipData {

int desc; // descriptor’s identifier loaded from buffer
4 int res; // descriptor’s identifier loaded from descriptor

int pos; // position loaded from descriptor
6 int val; // original entry loaded from descriptor
};

8 // dequeue descriptor
10 struct DeqDesc {

atomic<int> res;
12 atomic<int> pos;

atomic<int> val;
14 };
16 bool enq(int val) {

int pos = tail.load(rlx);
18 while (pos < head.load(acq) + N) {
20 atomic<int>& entry = buf[pos%N];

int elem = empty val(pos);
22 if (entry.compare exchange strong(elem, val, rel, rlx)) {
24 update counter<rlx>(tail, pos+1);

return true;
26 }
28 atomic thread fence(cns);

if (is val(elem))
30 pos = pos+1;

else if (in progress(elem) && !this was delayed(elem, pos))
32 check descr(elem);

else
34 pos = tail.load(rlx);

}
36 return false;
38 }

pair<int,bool> deq() {
2 int descriptors[NUM THREADS];

int threadid = this thread id();
4 int pos = head.load(rlx);

6 while (pos < tail.load(rlx)) {
atomic<int>& entry = buf[pos%N];

8 const int elem = entry.load(rlx);
int pvel = elem;

10 if (is val(elem)) {
12 const int descr = make descr(pos, elem, threadid);

const bool succ = entry.compare exchange strong(pvel, descr, rel, rlx);
14 if (succ
16 && check descr(descr, get descriptor(threadid),

WipData(descr, descr, pos, elem), descriptors)))
18 return make pair(elem, true);

}
20 if (in progress(pvel)) {
22 atomic thread fence(cns);

if (eqpos descr counter(pvel, pos)) {
24 descriptors[pos % THRDS] = pvel;

pos = pos + 1;
26 }

else if (this was delayed(pvel, pos))
28 pos = head.load(rlx);

else
30 check descr(pvel);

}
32 else

pos = head.load(rlx);
34 }
36 return make pair(−1, false);

}

Fig. 8. Lockfree bounded queue: enqueue and dequeue

objects with the actual values in a second phase. If one memory location was
updated before, the first phase fails, and the second phase restores the original
values. Any interrupting thread that reads a descriptor object will help the
original thread finish the MCAS (phase one and two) before it carries out its
own operation. Helping threads execute the same sequence of operations along
a common path. Thus, helping diminishes parallelism and increases contention
on the same memory locations.

3.1 Design

This section describes the high-level design of a lock-free bounded queue for in-
tegers. The bounded queue can be adapted for another type T , as long as atomic
operations supporting T ’s size are available and we can distinguish a value of T
from special entries, such as empty values and descriptors. The implementation
on integers reserves a bit for marking special entries.

We address the identified problems the following way: In a first step, we de-
couple the two memory updates of the enq operation. This is achieved through

1 // chkENTRY = 1, chkSTATE = 3
// stMAXBITS = 2, stVALID = 0

3 // stEMPTY = 1, stWIP = 3

5 template <memory order mo>
void update counter(atomic<int>& ctr, int pos) {

7 int oldval = ctr.load(rlx);

9 while ((oldval < pos) && !ctr.compare exchange strong(oldval, pos, rlx, rlx));

11 atomic thread fence(mo);
}

13 int make descr(int headpos, int entryval, int threadno) {
15 DeqDesc& ti = get descriptor(threadno);

const int descr = encode descr(headpos, threadno);
17 ti.res.store(descr, rlx);
19 ti.val.store(entryval, rlx);

ti.pos.store(headpos, rlx);
21 return descr;
23 }
25 void decide(DeqDesc& ti, WipData& wip, int descr) {

if (ready(wip)) return;
27 int min = head.load(seq);
29 const int valid = (wip.pos >= min);

const int result = (wip.desc & ˜stWIP) | valid;
31 const bool succ = ti.res.compare exchange strong(wip.res, result, rlx, rlx);

33 if (succ) wip.res = result;
}

35 bool check descr(int descr) {
37 DeqDesc& ti = get descriptor(descr);

39 return check descr(descr, ti, load threadinfo(ti, descr));
}

41 bool check descr(int descr, DeqDesc& ti, WipData wip, int∗ descriptors = nullptr) {
43 if (inconsistent(wip)) return false;

45 decide(ti, wip, descr);
if (in progress(wip)) return false;

47 return complete(descr, wip, descriptors);
49 }
51 bool inconsistent(const WipData& wip) {

return ((wip.desc ˆ wip.res) & ˜stWIP) != 0
53 || !eqpos descr counter(wip.res, wip.pos);

}

void help delayed(int pos, int∗ descriptors) {
2 if (!descriptors) return;

4 int p = pos − 1;
int h = head.load(rlx);

6 while (p >= h) {
8 int entryval = descriptors[p % THRDS];

10 validate descr(entryval);
p = p − 1;

12 h = head.load(rlx);
}

14 }
16 int validate descr(DeqDesc& ti, int descr, bool valid) {

const int result = (descr & ˜stWIP) | valid;
18 const bool succ

= ti.res.compare exchange strong(descr, result, rlx, rlx);

20 return result;
}

22 int validate descr(int descr) {
24 return validate descr(get descriptor(descr), descr, true);

}
26 bool in progress(int v) {
28 return (v & chkSTATE) == stWIP;

}
30 bool this was delayed(int descr, int thispos) {
32 return thispos <= get descriptor(descr).pos.load(rlx);

}
34 bool complete(int descr, const WipData& wip, int∗ descriptors) {
36 const bool succ = success(wip);

38 if (succ) {
help delayed(wip.pos, descriptors);

40 update counter<seq>(head, wip.pos+1);
}

42 const int entryval = (succ ? empty val(wip.pos+1) : wip.val);
44 atomic<int>& entry = buf[idx(wip.pos)];

46 entry.compare exchange strong(descr, entryval, rlx, rlx);
return succ;

48 }
50 int empty val(int pos) {

return ((pos << stMAXBITS) | stEMPTY);
52 }

Fig. 9. Lock-free bounded queue: auxiliary functions

Fig. 10. Graphical Overview

struct CircularBuffer {
bool enq(int elem);
pair<int, bool> deq();

atomic<int> head;
atomic<int> tail;
atomic<int> buf[N];
DeqDesc ti[THREADS];
};

Fig. 11. Class definition

Fig. 12. Lock-free bounded queue I

storing special values in empty queue locations. Each empty value is a represen-
tation of the next tail position that will produce a successful enqueue operation.
An empty value is marked using two bits (one to distinguish it from data and one
to distinguish it from a dequeue descriptor.) An enqueue operation uses CASS
to replace the expected empty value with the new value. This scheme prevents
delayed threads from the ABA problem. A delayed enqueue can never succeed
spuriously by overwriting a valid value or a later empty value because either
the buffer location contains the expected empty value or other threads have en-
queued (and possibly dequeued and stored the next empty value) at that location
in the meantime.

Fig. 12 shows the class definition and a graphical view of the data structure.
The queue contains four elements stored between tail and head. The other
entries are empty (indicated by the ’). Each empty value represents the next
tail position where an enqueue will be successful. A thread that attempts to
enqueue a new value, reads the tail and attempts to store the new value there
(using CASS). A thread that succeeded in storing the new element at position
p will attempt to set the tail to the following position p + 1 as long as tail

contains a position that is less than p + 1. If the CASS to store a new value is
unsuccessful, another thread must have succeeded in storing a new value at that
location. In this case, the enqueuing thread will retry at the next position p + 1
as longs as that position is less than head + buffersize. Note, the update of the
tail pointer to position p+1 may be delayed or may not execute at all if another
thread succeeded in storing an element at a later position and already updated
tail.

The use of empty values shifts the burden of updating two memory locations
atomically to dequeue. deq needs to update head and store the empty value
associated with the next successful enqueue operation at that location. To this
end, our dequeue operation utilizes descriptor objects. A descriptor is marked
using two bits (one to distinguish it from data and one to distinguish it from an
empty value). A dequeue operation proceeds along the following steps:

Fig. 13. Concurrent execution

Fig. 14. Lock-free bounded queue II

1. Set up a descriptor and use CASS to store a descriptor identifier at the de-
queue location. The descriptor contains information on the previous value,
the position, and a result flag. The result flag stores three states (undecided,
success, fail). If the CASS is successful, the dequeue operation is in progress
and the descriptor can only be replaced by either a new empty value (suc-
cess), or the previous value (failure).

2. Validate the operation by checking that the current head is at the location
stored in the descriptor. This step updates the descriptor’s flag.

3. If successful, move the head forward.
4. If successful, store the next empty value; otherwise restore the previous value.

The order of these steps prevents the ABA problem. At any given head loca-
tion, a dequeue can only succeed once. In any successful dequeue, the descriptor
is stored in the buffer when head < loc < head + N and it remains in the
buffer until the head has been incremented beyond the descriptor position. Any
validation of another dequeue at the same location will fail.

An optimized helping scheme: If a thread gets delayed, other threads will
read the descriptor object and help complete the delayed thread’s operation to
guarantee progress. A straight-forward implementation of helping would lead to
contention on the shared common path. We remedy this problem (a) by delaying
helping until a thread has found a valid dequeue location and (b) by employing
a helping scheme that minimizes the common path.

When a dequeuing thread t0 reads another thread’s descriptor whose location
is the same as the thread’s own dequeue position, then t0 will attempt to de-
queue from the next location (if elements are still available). After a thread has
successfully stored a dequeue descriptor it will validate it and then help other
delayed threads validate their dequeue descriptor. A thread needs to validate all
active descriptors between the current head and the new head position before

it can update head. The validation step will only set the flag of each active de-
scriptor accordingly. After all descriptors in that range have been validated, the
thread can continue with its own operation (head update and descriptor replace-
ment). By delaying the validation step until a thread’s own descriptor has been
validated, we increase the chance that other threads finish their dequeue oper-
ation before they need help. This scheme reduces the contention on the buffer
and head and allows multiple dequeue operations be in-flight concurrently.

A thread finding a descriptor that does not correspond to the expected head

location helps the delayed thread finish all three steps (validation, head update,
and descriptor replacement). This is needed in order to remove an invalid de-
scriptor from the buffer and restore the existing value to be dequeued.

3.2 Implementation

In a lock-free bounded queue threads can concurrently attempt to read and write
the head, tail, and the buffer elements (buf). All data members are modeled with
atomic types. Each entry in the buf array is either a valid value (lowest bit is
0) or a special value (1). Special values can symbolize either an empty entry
(lowest two bits 01) or a work descriptor (11) pointing to an on going dequeue

operation.
Upon queue construction, each buffer element is initialized with a unique

empty value. The empty values are a function of the tail position that will
produce a successful enqueue operation at that location. Our implementation
left-shifts the position by 2 and adds the tag for an empty value (Fig. ?? func-
tion EmptyVal). Unique empty values decouple the enqueue’s write of the buffer
element from advancing the tail. The empty values also help decide, when a enq

operation is delayed and needs to resynchronize with tail. In addition, unique
empty values prevent the ABA problem of delayed enqueue operations.

The dequeue operation (Fig. 8 function deq): Similar to enq, deq uses a local
variable pos to identify the current location, where it attempts to read a value
(Line 2). In Line 6, the current buffer element is loaded into entryval. If entryval
is a valid value, deq attempts to replace this element with the next empty value
and increment the head. This two stores need to be executed seemingly atomi-
cally.

The descriptor: Similar to MCAS [5], deq employs a descriptor object an-
nouncing the operations. After the descriptor is placed in the data structure,
the dequeue position used to place the descriptor is validated against the most
recent head position. The dequeue is correct if the position is ahead of the head.
Lastly the descriptor is replaced either by the next empty value (success), or by
the original value (failure).

Our implementation does not allocate the descriptor objects dynamically and
does not require memory reclamation techniques. Instead, our approach reserves
one descriptor object for each thread. The descriptors will be reused every time
a thread dequeues an element. The descriptor consists of four entries desc, res,
pos, and val store the original descriptor (used for validation), result of the head

validation, the position, and the read value respectively.

Encoding of the descriptor’s identifier: The task of the descriptor’s identifier
is to allow other threads find the descriptor. In addition, the identifier has to be
sufficiently unique in order to guard against the ABA problem. Hence, we use an
encoding similar to a technique described by Luchangco et al. [17]. In our imple-
mentation, the two lowest bits are reserved to encode the kind of entry (value,
empty-value, or dequeue descriptor) and later the result of the started deq. The
following n bits are reserved to encode the thread id. Our implementation uses
eight bits for that. The remaining bits store the lowest bits of the corresponding
buffer position. Assuming 256 threads, the descriptor prevents ABA if a helping
thread is not delayed for more than 254 and 222 dequeue operations on 64bit and
32bit systems respectively. On 64bit systems, the number of supported threads
can be easily increased without sacrificing ABA safety.

Validating the descriptor: After the descriptor has been stored, thread will
validate the descriptor. Descriptor validations queries the current head. The de-
queue is valid, if the descriptor’s position is equal or higher than head. Validation
will update the descriptor’s res field using a CASS with the result. The next step
validates all other in-flight descriptors between ≤ pos(descother) < pos(desc).
In order to prevent an ABA problem introduced through reuse of descriptor ob-
jects, we encode the result field with the descriptor’s position. The two lowest
bits are reserved to store the result (undecided, success, fail), while the remain-
ing upper bits are tagged with the descriptors location. Any helping thread that
gets delayed cannot erroneously update the res field, because any time the de-
scriptor gets set up for a new location, the res tag changes. Consequently, any
delayed thread that attempts to update that field will fail.

3.3 Detailed description of the enqueue and dequeue

The enqueue operation (Fig. 8): enq uses a local variable, pos, to iterate through
the buffer elements until a store is successful or no more empty location is avail-
able (while loop in Line 19). In Lines 22-26, enq attempts to compare and ex-
change the expected empty value at the buffer location with the new element
that is going to be stored. If the operation is successful, enq will make tail point
to pos+1 (Line 24). The CASS (Line 22) uses memory order release if successful.
This guarantees that a read of that location tagged with acquire can load ele-
ments depending on that value. The counter update is tagged relaxed, because
no information is released. Interleaving threads may cause the CASS to fail. In FiXme Fatal: can the

ops be reordered?this case, the new buffer element at pos is returned in entryval. enq handles
three different scenarios. First, entryval contains a value (Lines 29,30), thereby
indicating that another thread has succeeded with an enqueue operation. enq will
retry to enqueue at the next position. If that enqueue operation is successful, the
tail can be updated to pos+1 because the store to pos has already completed.
Second, if entryval points to a dequeue descriptor (either a valid or invalid de-
queue), enq will test if it was delayed by comparing the descriptor’s position. If
enq is not delayed, it help finish the dequeue operation and remove the descriptor
from the buffer (Line 31–34). Afterwards enq retries the operation at the same
location. Third, entryval could indicate an empty value that is out-of-sync with

pos. In this case, enq will resynchronize pos with tail (Line 35 and 36). The
thread fence tagged consume in Line 28 avoids reorderings between reading the
descriptor (Line 22) and accessing the descriptor values (Line 31).

The dequeue operation (Fig. 8): deq declares a local buffer where it stores the
descriptors of concurrent dequeue operations (Line 2). The local buffer avoids
reading the buffer a second time during the helping phase of the descriptor val-
idation. The thread id of a thread is needed to encode the descriptor (Line 3).
deq uses a local variable, pos, to iterate through the buffer elements until a valid
element is found and a dequeue can be attempted. (while loop in Line 6). Lines
7–9 create an atomic reference of the buffer element and copy its current con-
tent into a mutable (pval - previous value) and non-mutable (elem) variable. The
load is tagged with relaxed, because the content of the buffer will be confirmed
through a successful compare and exchange operation; the correct memory or-
dering with an element’s content (in case of a pointer or descriptor) will be
guaranteed through an accordingly tagged fence. If the loaded element is a de-
queable value, deq sets up its own unique descriptor identifier and attempts to
store it in the buffer (Lines 12,13). If that operation fails, some other thread has
modified the element at pos before (or a store to that location became visible)
and deq proceeds as if elem had not been a valid element. If the compare and
exchange succeeds, deq invokes check descr to complete the pending operation.
If check descr succeeds, deq returns the dequeued value (Line 18). A dequeue
failure can have several reasons. (a) the new old value of pvel (obtained by the
CASS in Line 13) is a descriptor object. If the two threads attempted to dequeue
at the same location, then deq stores the other thread’s descriptor in its local
buffer and attempts to dequeue from location pos+1. If the dequeue locations are
different, then one of the two threads got delayed. If deq is delayed, it rereads
head, otherwise it helps the other thread finish the operation and remove the
descriptor from the buffer. If pvel is a regular or empty value, then some other
thread must have made progress at the same location and deq will resynchronize
with head. If successful, the CASS (Line 13) uses release to guarantee store or-
dering between the descriptor field and the buffer update. If the CASS fails, the
implementation falls back to a relaxed read. The atomic consume fence (Line
29) guarantees the memory ordering between the descriptor identifier and the
descriptor data (accessed by check descr). Using descriptor objects (Fig. 9 func-
tions make descr, check descr, decide, complete): make descr sets up a descriptor
object for the current dequeue operation and returns a unique identifier to the
descriptor. The descriptor encodes the result field with the unique identifier.
Updating the result field uses CASS to replace the identifier with a flag that
indicates whether the operation succeeded. This avoids the ABA problem when
a helping thread gets delayed. The unique identifier encodes the current posi-
tion and thread id. make descr uses relaxed stores that will be released when the
descriptor’s identifier is stored to the buffer.

The check descr functions’ task is to validate the descriptor and complete
the operation in progress. The unary version is called when a thread is helping
another thread. In this case it decodes the descriptor’s identifier to find a spe-

cific thread’s descriptor object (Line 37–39) and creates a local copy wip (work
in progress). The main check descr (Lines 42–49) makes sure that the local de-
scriptor copy is consistent, calls decide to validate the dequeue at that location,
and if successful calls complete to finish the operation . FiXme Note: check

call to
in progress(wip)

inconsistent (Lines 51–54) validates that the loaded data is consistent. To
this end, the descriptor identifier is compared with the identifier loaded from the
descriptor object, and the loaded position is compared with the encoded position
in the identifier. If the thread that started the dequeue has already finished
the operation associated with the loaded identifier and started another dequeue

operation, this consistency check will fail and helping is no longer necessary.

decide validates the operation and encodes the outcome of the dequeue oper-
ation into the descriptor object’s res field also updates the local copy (wip). Line
26 returns immediately, if the outcome of the operation has already been decided.
Line 28 loads the current head location. The read is a sequentially consistent read
(seq cst). This is necessary for two reasons (1) setting up a descriptor object
and storing the descriptor’s identifier in the buffer and updating head are two
independent operations that need to be ordered – we need to guarantee that the
descriptor identifier was stored in the data structure before head was updated,
(2) reads and writes to head need to be globally ordered; otherwise the read may
return some “stale” old value, which could lead to an erroneous validation. Lines
29,30 test that head is smaller than the dequeue location. If head is larger some
other thread has already dequeued an element from this position. This happens
when some thread interleaves its deq between the time when deq read the head

or when the dequeue’s pos got out of sync with head. Line 31 attempts to store
the result in the descriptor object. If this fails, some other thread had modified
the result in the meantime. If successful, also wip.pos is updated . FiXme Note: check

why wip.pos is not
updated if the thread
checks itself

complete finishes a started operation by either restoring the buffer’s old value
in case deq was not started at a valid head position, or updating head and storing
an empty value in the buffer. If the operation succeeded, complete helps other
concurrent threads validate their descriptor objects and then advances the head

(Lines 38–41). Updating head is a sequentially consistent operation that pairs
with loading head’s value in decide. Lines 42–46 either restore the old value, or
store the next empty value corresponding to pos+N. If this operation fails, some
other thread must have executed the same compare and exchange. Note it is also
possible that a helping thread was delayed between check descr’s consistency
check and the execution of decide’s compare and exchange and therefore loaded
a result corresponding to a later operation. In this case, executing complete

will not modify the state of the bounded queue. The counter update will be
unsuccessful, because some other thread must have succeeded on the current
position and set head to a value greater than pos. Similar the compare and
exchange in Line 46 will fail, because the descriptor’s identifier must have been
removed from the buffer before.

Fig. 13 shows the concurrent execution of five threads on the lock-free bounded
queue. Two threads, T1 and T2, have successfully stored their values in the
buffer. Since the tail is not yet updated T2 must have attempted to store its

1 pair<int, bool> deq() {
int pos = head.load(relaxed);

3 while (pos < loadRecent<acquire>(tail)) {
int res = buf[idx(pos)].val.load(relaxed);

5 if (head.compare exchange strong(pos, pos+1, release, relaxed))
return make pair(res, true);

7 }
return make pair(−1, false);

9 }

Fig. 15. Lock-free dequeue in a hybrid implementation

value at location 35, but failed because T1 had succeeded before. T1 and T2 will
attempt to set tail to 35 and 36 respectively. If T2 succeeds first, T1 will skip
the tail update.

Three threads (T0,T3,T4) are dequeuing. T0 was delayed between the time
it read head and the time it placed the descriptor at location 17. Since head has
been moved past 17, the validation against head will fail, and the original value
(128) will be restored. T3 and T4 are dequeuing from a valid location. Since
both threads are still active and tail has not been updated, T4 must have seen
T3’s descriptor at location 30 before placing its own descriptor at location 31.
Then T4 will validate the descriptor against head. T4’s res field is already set to
success. Since T3’s descriptor is undecided (res is U), T4 will help T3 validate
its descriptor before updating head. After descriptor validation, T3 and T4 will
attempt to update head, and then replace their descriptor identifier with the
next unique empty values (46’ and 47’).

3.4 Alternative implementations

We also experimented with other bounded queue designs. One of them is a hybrid
implementation. They key observation for the hybrid design is that dequeue
needs to update only head. This allows for a simple lock-free implementation
displayed in Fig. 15. Reading tail uses acquire semantics in order to establish a
happens before relationship with the previous store to tail. This guarantees that
the buffer updates up to entry tail-1 are visible. Line 5, stores the buffer entry
in a local variable. If the CASS that updates head by 1 in Line 7 is successful,
this deq returns the dequeued element. Otherwise, dequeue is retried at the most
recent head position. The implementation of enqueue continues using a lock and
is the same as in the two lock version in Fig. 7. Note, since there can be a data
race between delayed dequeuing threads and an enqueue operation, the buffer
elements have to be of atomic type.

By using unique empty values, we can devise another hybrid implementation
that supports lock-free enqueues and uses locks to dequeue (or a lockfree sin-
gle dequeuer). Finally, we implemented another lock-free bounded queue thatFiXme Note: cite

scenario where this is
useful; OS kernel?

uses helping for enqueues. Here, we employ a descriptor object similar to the
described approach in §3.1 to achieve the atomic update of buffer element and
tail. We noticed, that the absence of unique empty values complicates the im-

plementation, because less information is available to determine when a thread
gets delayed. Consequently, this implementation is outperformed by our main
approach.

4 Correctness

We used several tests to validate the circular buffer on various architectures,
we used the CDS Model Checker to verify the execution, and we will argue
informally that our implementation is correct.

4.1 Correctness Tests

To test the correctness of data-structures we performed multiple tests on archi-
tectures exhibiting weak and strong memory models. This includes PowerPC a
and B (Blue Gene), multi-socket and single socket x86 architectures, and multi-
core ARM systems. We tested various load scenarios and used different buffer
sizes (starting from a size of 2). We tested both with the same value across all
enqueues (potentially prone to ABA) and with unique values for all enqueue
operations. After we reached a quiescent state, we compared the history of each
thread with the state of the queue to verify that the number of successful en-
queues and dequeues agrees with the initial buffer size and number of elements
in the queue. One test used alternating enqueues and dequeues with a buffer size
that was equal to the number of threads. Since enqueues and dequeues alternate
all operations in any linearizable implementation must succeed. On the G5 Pow-
erPC architecture, the hybrid implementation experienced a small quantum of
spurious unsuccessful enqueue and dequeue operations for relaxed loads from
head and tail. Roughly 1 out of 1 million operations did not succeed.

4.2 Model Checking

To test the validity of our implementation, we used Norris and Demsky’s stateless
model checker, CDSChecker [?]. CDSChecker provides its own implementation
for atomics and threading. The CDSChecker exhaustively searches all possible
interleavings and memory operation results (in particular for the relaxed memory
model). The CDSChecker records an execution scenario and prints an execution
trace if a violation was detected. CDSChecker can report the presence or absence
of data races, deadlocks, uninitialized atomic loads, and user-provided assertion
failures. We modified our implementation slightly to make it compliant with the
CDS framework. The most significant change was the replacement of consume

with acquire tags, since CDS Checker does not yet support consume seman-
tics. We devised scenarios where threads played the roles of enqueuers and/or
dequeuers and attempted to modify the bounded queue concurrently. At the end
of operations, we validated the state of the data structure, and that the elements
remaining in the data structure were consistent with the number of successful
operations. An exhaustive examination of all combinations of two operations in
two threads and some three thread cases revealed no feasible buggy executions.

4.3 Correctness Considerations

Here we argue that our implementations are free of errors and fulfill lock-free
correctness properties in the context of the relaxed memory model.

Progress: A concurrent object is lock-free if one out of many contending
threads makes progress in a finite number of steps [9]. The critical points for
progress are when enq and deq store a new value or a descriptor identifier re-
spectively in the data structure. At each tail and head position, the first thread
that executes the CASS operation makes progress.

Termination Safety: The implementation is termination safe as long as there
exist at least one dequeuer and enqueuer. Consider a dequeuing thread that ter-
minates after it placed a (valid or invalid) descriptor identifier in the buffer. In
case that the descriptor is valid, another dequeue will validate the descriptor,
move the head past the descriptor (thereby enabling enqueues at that location),
but leave the descriptor in the buffer. An enqueuing thread will find the descrip-
tor and remove it from the buffer. Similarly, if a thread attempting an invalid
dequeue terminates before the descriptor can be removed, any other operation
will help validate the descriptor and then remove it from the buffer. If an enque-
ing thread terminates before it can increment tail, another enqueueing thread
will see the new element and enqueue afterwards and move the tail, thereby
making the first element visible. However, if an enqueue (or a valid dequeue)
terminate, it requires another enqueue (or dequeue) operation to make the for-
mer operation visible. If no other enqueue (or dequeue) is running, the buffer
will become full (or empty). In essence, this is consistent with the semantics
of a sequential bounded queue, where the buffer becomes full (or empty) when
complementary operations do not exist.

Fig. 16. Buffer element state transitions

Memory tag correctness: In this section, we argue that the memory tags are
sufficient to keep the data structure consistent in the presence of non-sequentially
consistent memory operations. Before discussing correctness, consider the state
transitions of buffer elements in Fig. 16.
enqueue: An enqueue uses two operations to determine a range ([tail,head+N))FiXme Note: mention

“guarantees” upfront where new values could be stored. head is loaded using acquire which synchro-
nizes with the sequentially consistent update of head in a dequeue operation.
This guarantees that the enqueue will see at least all valid dequeue descriptors
that were stored in that range before head was advanced. The next step is to
enqueue the new element by using CASS with an empty value (tail+N′) at the

first available position. The CASS can be unsuccessful because the buffer may
contain one of the following values:

– a valid value: in this case, the enqueue will be reattempted at the next
buffer location. acquire on head’s load guarantees that the enqueue cannot
load a “stale” valid value that was stored at that location earlier. Only if
loading head is delayed by more than 2N operations, enqueue could load a
valid value. However, in this case either the enqueue fails earlier because the
condition pos < head + N does not hold, or also tail’s value is stale, in
which case we could not enqueue at that location anyways. Thus, enqueue
does not skip a valid buffer location due to a “stale” valid value and stores
the new element at the first available position.

– descriptor: in order to use a descriptor, we need to access its values. To this
end, the thread fence consume is inserted before handling descriptors. If the
enqueuing operation was delayed, we load the new tail and reattempt the
enqueue. Otherwise, the enqueue helps finish and remove the descriptor and
retries at the same location.

– an empty value: in this case the empty value must be more recent than
the enqueues expected empty value. Hence, we reload tail and retry the
enqueue.

If no available buffer location was found, enqueue terminates. Otherwise, the
tail location is advanced to one past the enqueued position.
dequeue: A dequeue operation is divided into three parts. First, dequeue finds a
potential dequeue location and installs a descriptor object. To this end, it uses
two relaxed loads to determine a dequeueable range ([head, tail)). Then dequeue
walks through that range and uses relaxed loads to identify the first dequeuable
position. If a valid element is found, we use CASS to install a descriptor. One
property of read-modify-write operations is that for consistency they modify
most recent values (i.e., they cannot modify a stale entry). Thus, if the CASS

was based on a stale value, the CASS fails and becomes a relaxed load operation
and depending on the value, the same location may be retried. If dequeue finds
another descriptor in the buffer, we distinguish three cases. (a) the descriptor
is for the same dequeue location. In this case, we store the descriptor in an
internal buffer and then dequeue continues with the next buffer location; (b)
this thread is delayed, then we just load head and reexecute the dequeue; (c) the
other thread is delayed, in which case, the dequeue helps remove the descriptor
from the buffer before the dequeue is retried at the same buffer location. If the
loaded value is an empty value, either the loaded range is stale, the loaded buffer
value is stale, or the dequeuing thread got delayed. In any case the dequeue gets
reexecuted.

Second, once the descriptor is installed we use one sequentially consistent load
of head to validate the dequeue. The dequeue is valid if the dequeue location
is greater than the current head value. If that is not the case, the dequeue
may still have succeeded. In this case, another thread must have validated our
descriptor before updating head. Thus, loading the descriptor value will see any

modifications that occurred before the head update. After validating our own
descriptor, the dequeueing thread will validate all descriptors in the range of
[headseq,pos) and then advance head past the dequeued element. Since descriptor
validation must not read a stale value, we need to use sequentially consistent tags
for both the load of head and advancing head, which makes the two operations
globally ordered.

Third, once the descriptor is validated, dequeue removes the descriptor and
replaces it with the next empty value (or in case it failed with the previous
entry).

4.4 Linearizability and History

Introduction: The traditional standard for correctness of concurrent algorithms
is linearizability, but this property loses currency in the realm of weak memory
models. Linearizable algorithms assume sequential consistency, but achieving
this in practice requires expensive operations such as memory fences. As our li-
brary is implemented over the relaxed C++11 memory model and does not utilize
sequentially consistent operations, the moniker of linearizable is not appropriate.
Algorithms implemented in languages with weak memory models tend to yield
constellations of partial orders on sets of operations; there may be many chains,
that is, totally ordered subsets, but these chains may be disjoint. However, we
can claim that our algorithm obeys a property that approximates the notion of
linearizability.

In this section, we borrow the techniques of library abstraction for relaxed
memory models as laid out by Batty et al. [2], which provides us with powerful
formalisms for understanding C++11 concurrency. To take advantage of these
formalisms, we must first provide a compatible, abstract specification of our al-
gorithm, which we have done in Fig. 17. Although the specification differs from
the actual implementation in certain key aspects, it contains all the behaviors
of the original implementation. This falls in line with the Abstraction Theorem,
which states that if a specification abstracts an implementation, then any be-
haviors of a client using the implementation are contained in the behaviors of
a client using the specification. We assume we have a client which calls our ab-
stract library (the specification) and whose threads execute arbitrary sequences
of enqueue and dequeue operations with arbitrary inputs; this client is capable
of producing any and all conceivable executions.

Notation: The semantics of a program are defined by the set of all valid execu-
tions of that program. An execution is defined as a tuple X = (A, sb, ib, rf, sc,mo, sw, hb).
A is the set of actions performed by threads, the remaining elements are vari-
ous relations on A as defined by the memory model [2]. An individual action is
defined as a tuple a = (e, g, t, ϕ), where e is a unique identifier for the action,
g is an atomic section identifier, t is the thread identifier, and ϕ is the effect of
the action (e.g. store or load). Of these actions, we denote the call and return
actions of the operations enq and deq as interface actions; these are the actions
that concern the client code. We also distinguish specific actions where enq and
deq operations are said to take effect as effect points.

From the perspective of the client, the interaction with the library amounts to
a sequence of call and return actions. This view of the execution of the program
is expressed as a history, produced by a history-extracting function history(X),
where X is an execution of the program. A history is defined as a tuple H =
(A,G,D) where A a the set of call and return actions, and G and D are relations
on A. G, which we refer to as the guarantees relation, is a restricted subset of the
happens-before (hb) relation of the execution that captures all of the hb edges
between call and return actions. D, meanwhile, is the denies relation, which
contains the edges that the client cannot enforce because the semantics of the
library render it impossible. As a consequence of the Abstraction Theorem, the
abstract library must provide the same guarantees as the concrete library, but
is allowed to deny less; this is because the abstract library may exhibit more
behaviors than the concrete library. However, this only strengthens our proofs:
if we can prove that the abstract library is safe, then we know that the concrete
implementation must also be safe.

Proof enq vs. enq: Given an execution X and its history history(X) = H =
(A,G,D), let e0 = ((i, , u, call enq()),
(j, , u, return enq(true))) and e1 = ((k, , v, call enq()),
(l, , v, return enq(true))) such that e0, e1 ∈ A. We seek to prove that for
any two such operations, if e0 succeeded before e1, then e0 �G e1.

First, we know that if e0 and e1 are performed by the same thread (i.e.
u ≡ v), then it is trivial to show e0 �G e1, because the sequenced-before (sb)
implies happens-before (hb). Therefore, we only need to consider the cases in
which u and v are different threads.

When we examine the library-local semantics of the execution, we see that
the effect point of an enqueue operation is when the thread successfully performs
a double compare-and-swap to write its value and increment the head on line 31.
This is analogous to the two-step process in the actual implementation, where
a thread uses two compare-and-swap operations to replace the element (this is
when the operation takes effect) and increment the tail (this may not succeed if
another thread increments the tail before).

Since the DCAS updates the head and the memory contents at that position
using release semantics, these updates form a chain under the modification-order
(mo) relation. Whenever an enqueuing thread reads the value of the head as is
done on line 15, even though it reads with weaker semantics, the axioms of the
memory model require that the values it reads must respect the modification
order. If the read occurs after a DCAS, then it must read the most recent value in
the modification order. Otherwise, it is possible for the read to take its value from
a previous write. However, the subsequent DCAS will synchronize with the release
of the previous DCAS because the stale read will cause the DCAS to fail. Therefore,
if e0 succeeds in moving the head before e1, either e1 synchronizes with e0 or
with another, intervening enqueue operation which synchronizes with e0; since
the synchronizes-with relationship is transitive, e1 synchronizes with e0. The
relation synchronizes-with implies happens-before. This means that e0 �G e1.

deq vs. deq: Let X and H be defined as in the previous subsection, and let
d0 = ((i, , u, calldeq()), (j, , u, returndeq())) and e1 = ((k, , v, calldeq()), (l, , v, returndeq()))
such that d0, d1 ∈ A. We seek to prove that for any two such operations, if d0 suc-
ceeded before d1, then d0 �G d1. As in the previous section, dequeue operations
performed by same thread guarantee one another.

The effect point of dequeue operations can be found on line 57 when the
thread successfully moves the position of the tail. The compare-and-swap oper-
ation and the preceding read are all executed with relaxed semantics, which is
sufficient for updating a single counter. In that only one dequeuing thread can
make progress at one time, and must take the value of the previous successor in
order to progress, we are guaranteed that d0 happens-before d1 (or d0 happens-
before an intervening dequeue that, in turn, happens-before d1) and therefore
d0 �G d1.

enq vs. deq: Again, let X and H be as has been defined, and
let e = ((i, , u, call enq()), (j, , u, return enq(true))) and let d = ((k, , v, call deq()),
(l, , v, return deq())) such that e, d ∈ A. We seek to show for any two such
operations, either e �G d or d �G e. Once again, two operations performed by
the same thread guarantee one another.

Enqueue and dequeue operations coordinate with one another when they get
the most recent values of tail and head on lines 19-25 and 44-50. This is done so
that threads cannot enqueue into a full buffer or dequeue from an empty buffer.
Since enqueues and dequeues are guaranteed to get the most recent values of
tail and head, a successful e happens-before a later d and vice versa. Therefore,
either e �G d or d �G e.

Conclusion: We have established that for any execution X of the abstract
specification, all operations captured by the history H = history(X) are totally
ordered by the guarantee relation. This means that all interface actions, the
actions which concern the client, are totally ordered with respect to the happens-
before relation. In the realm of relaxed memory concurrency, this is the closest
approximation of sequential consistency that we can achieve.

5 Evaluation

Performance considerations:
Performance Tests: We used strong scaling to test the performance of each im-
plementation. For each implementation, we varied the number of threads from
two to sixty-four against a fixed 40 million operations and a buffer size of 128.
Additionally, we varied the behavior of the threads from only enqueueing or
dequeueing to alternating between enqueueing and dequeueing operations. We
ran each experiment five times and took the average of the results. Performance
experiments were conducted on three different architectures: x86 (AMD Opteron
8-core, Intel 20-core – 2 sockets with ten cores each and hyperthreading disabled),
PowerPC (Power8 – 2 sockets with ten cores each and each core supporting up
to eight hardware threads), and ARM (ARM Snapdragon 410 quad-core). In
each case, the experiments were performed when no other users were using the

system. We tested four different algorithms. Singlelock uses a single lock to syn-
chronize access to the data structure. Since only a single lock is used, the result
is a sequentially consistent implementation. Double lock refers to the two-lock
implementation presented in Fig. 7 and is similar to Linux SPSC implementa-
tion, where each role is protected by a lock; hybrid refers to implementation
outlined in Fig. 15; lockfree refers to the main implementation discussed in this
paper. Zhang refers to Zhang and Tsigas circular queue implementation. We
found that the lock-based implementations are particularly informative as they
give us a benchmark to compare against the hybrid approach, which bridges the
gap between lock-based and lock-free.

The most dramatic and revealing results for the non-blocking implementation
are seen on the 24-core PowerPC. Here the described lock-free implementation
best demonstrates its scalability, leveraging many threads across many cores to
achieve the best results. Likewise, on the 12-core Intel architecture, we see that
the lock-free implementation performs very well, although the hybrid implemen-
tation just barely outpaces it as the number of threads increases.

Trends similar to those seen on the 24-core PowerPC can be seen on the G5
PowerPC, Freescale QorIQ PowerPC, Intel dualcore, Intel Haswell, and ARM
dualcore architectures, although, with fewer cores to take advantage of, the per-
formance gap between lock-based and lock-free implementations is considerably
smaller. However, as the number of threads increases, we observe that the ability
of the lock-free implementations to manage contention gives them a slight edge
over their competitors.

Finally, on the AMD architecture (graph not shown), we observed lock-based
approaches performing better. Interestingly enough, the single-lock implemen-
tation outperforms the double lock implementation, which in turn is faster than
the lock-free version. The less contention-prone hybrid version performs best. For
performance, the environment favors simple, lock-based solutions, as threads
can spin locally on locks; the descriptors, meanwhile, present a moving and
ephemeral target, which strains performance due to latencies, high contention,
frequent cache invalidation, and cache coherence traffic.

We also ran tests where we used threads that either enqueue or dequeue. We
found that the obtained numbers are harder to interpret, because any truly con-
current implementation (double-lock, hybrid, and lock-free) shows performance
imbalances where either enq or deq runs faster. Hence, the buffer either fills up,
or empties out, leading to a high number of unsuccessful operations. Due to the
buffer being circular, those unsuccessful operations increase contention on the
slower buffer end. We were able to hand-tune the implementations by utilizing a
back-off scheme, but such modifications are highly architecture dependent and
cause bias towards specific implementations.

Comparison of Lock-free Implementation to Vyukov and Tsigas/Zhang Queue
Implementations: To compare the performance of our lock-free implementation
to a contemporary alternative, we also collected data on the performance of
the Vyukov multi-producer, multi-consumer bounded queue implementation and
the Tsigas and Zhang implementation, both of which are described in §6. The

Vyukov implementation is fine-tuned to maximize performance. It uses fine-
grained locking and does not provide lock-free guarantees. In principal, the
Vuykov queue is similar to our implementation, except that it does not pro-
vide helping, which makes it susceptible to threads delaying other threads and
subsequent failures of operations. Testing Vuykov’s queue with alternating en-
queues and dequeues in four threads on an Intel Haswell (four cores) shows that
not all enqueues and dequeues succeed. For example, with a buffer size of four,
3 out of 1000 operations fail. The number declines to 5 out 10000 and 1 out
of 10000 when we increase the buffer size to 8 and 16 respectively. In terms of
pure performance, we observe that, in general, the Vyukov implementation out-
performs our lock-free implementation, although on Intel architectures, we note
that the two are closely matched.

Meanwhile, our implementation of the lock-free queue of Zhang and Tsigas
is competitive on the Haswell and ARM architectures, but hemorrhages cycles
on machines with a higher number of cores. The reasoning for this is that the
underlying algorithm, as it is given, makes no assumptions about the memory
model of the implementation language or underlying architecture. Our C++11
implementation takes the conservative route and assumes that all atomic opera-
tions ought to execute with sequentially consistent semantics. On the other side,
Zhang and Tsigas relies on memory management, such as hazard pointers [19],
to avoid the ABA problem. In our tests, we stored unique integer values in the
queue, and thus no memory management overhead was incurred.

Workload Distribution Tests: A balanced workload of 50% enqueue opera-
tions and 50% dequeue operations is ideal for performance because it maximizes
the likelihood that the buffer will be neither empty nor full. In real world situa-
tions, however, this is rarely the case. Studying how the data structure behaves
under different workloads gives two-fold benefit. First, it provides insight into
how the data structure will behave ”in the wild.” Second, it lets us see how
each operation (in this case enqueues and dequeues) performs under increased
contention.

In each test, 16 threads performed random operations on a ringbuffer of
fixed size, initially half full, over the course of 2000 milliseconds. We varied the
distribution of enqueue and dequeue operations, from 25% enqueues and 75%
enqueues to 70% enqueues and 30% dequeues. For a given implementation and
workload distribution, the test was performed five times, and from these we
calculated the average number of successful operations per millisecond. These
results were normalized to the results of the ideal 50% enqueue / 50% dequeue
distribution for a given implementation. Finally, we calculated the standard de-
viation for each implementation’s set of normalized throughputs, which indicates
extent to which each implementation is affected by changes in workload.

In Fig. 22, we see the throughput curves for each implementation on the
Freescale 24-core PowerPC. It is worth noting that, for any implementation, its
throughput curve is highly similar across all architectures. We can say that these
graphs reveal information that characterizes the behavior of each implementa-
tion.

Table 2. Standard Deviations of workload distribution tests

Intel AMD G5 24core PPC ARM

Singlelock .1427 .1394 .1552 .1637 .1583

Doublelock .1681 .1782 .1682 .1755 .1550

Hybrid .1563 .2486 .1636 .1812 .1537

Lockfree .1002 .0865 .1209 .0495 .1356

The throughput curves for the single lock and double lock implementations
are highly symmetric and sharper than the others. The symmetry is due to
the fact that the lock-based implementations try to treat enqueuing threads
and dequeuing threads equally, which means that workloads that are enqueue-
dominated are treated the same as those that are dequeue-dominated. Mean-
while, the sharpness is caused by the time cost of threads waiting to acquire
their lock only to fail in their operation due to the buffer being empty or full as
a consequence of the imbalance in the workload.

Meanwhile, the hybrid implementation has an asymmetric throughput curve
that is a blend of the lock-free and lock-based implementations. The hybrid
with lock-free dequeue gently slopes downward as the percentage of enqueue
operations increases. Ceteris paribus, if a client expects a specific range of un-
balanced workloads, they will see more consistent performance by using a hybrid
implementation tailored to their application than if they were to use a purely
lock-based one.

Lastly, we see that the lock-free implementation is the flattest of all, an obser-
vation which we confirm in Table 2, which records the standard deviations of the
measurement sets. This means that the lock-free implementation offers the most
consistent performance across different workloads, due to its ability to mitigate
both the cost of failure and the tension caused by contentious workloads.

6 Related Work

Numerous bounded queue implementations exist. The first wait-free queue for a
single enqueuer and single dequeuer was given by Lamport [14]. Other bounded
queues also limit the number of concurrent enqueuers or dequeuers [7], [15],
[8]. Stone [26] presents a lock-free bounded queue for multiple enqueuers and
dequeuers. His implementation relies on the availability of double compare-and-
swap (DCAS). DCAS atomically updates two independent memory location and
is only available on older Motorola architectures, but not on modern processors.
Hardware transactions, such as on Intel’s Haswell, will allow for such imple-
mentations. Shann et al. [25] present a lock-free bounded queue that relies on a
double-word wide compare-and-swap (CAS2) instruction to prevent ABA prob-
lems. CAS2 only recently became more widely available on modern processor
designs. Tsigas and Zhang [28] present a scalable bounded queue that only uses
single-wide compare-and-swap (CAS). Their implementation updates head and
tail in steps of m, thereby reducing the contention on shared variables. To dis-

tinguish empty from full buffer entries, dequeue replaces a valid buffer element
with a null value. In order to reduce the likelihood of ABA, their implementation
reserves a bit of each buffer element, which is flipped after each enqueue/dequeue
pair. This changes the ABA into an ABABA problem. To avoid ABA on stored
elements, their buffer relies on dynamic memory management. Spurious CAS
successes remain a problem when the buffer is almost full or empty and with rel-
atively small queue lengths. Shafiei [24] presents a lock-free bounded queue that
use collect objects to represent head and tail. In a collect object, each thread
owns a field, where it has exclusive write access. The most recent value can be
retrieved by scanning other threads’ fields. The implementation compresses a
32bit value, index, old and new counters into a 64bit field, which allows for a
buffer capacity of up to 214 elements.

Some available concurrent libraries offer bounded queues [16][1], but they
limit the number of concurrent readers, writers, or both. A portable imple-
mentation relying on the C++11 memory consistency model supporting multi-
producer and multi-consumer is given by Vyukov [29]. His implementation uses
per-element locks. When an element is locked a thread moves on to the next
element. A thread holding a lock can delay other threads indefinitely. This
makes the code simple (about 90 lines of code) and fast, but does not guarantee
all lock-free properties (i.e., termination safety, resilience to priority inversion).
Frechilla [6] presents another multi-producer and multi-consumer queue based
on two tail pointers. A thread gets a slot in the data structure by atomically
incrementing the first tail pointer. After an element has been written, the thread
will spin until it can increment the second tail pointer. Consumers dequeue up to
the second tail pointer. This design is not termination safe and prone to priority
inversion.

When the use of dynamic memory is feasible, unbounded queues can be
implemented as lists or similar data structures. Multiple implementations ex-
ist [20][9][13][12]. Back-off and enqueue/dequeue matching techniques [21] for
unbounded queues can reduce the contention on shared data.

To reason about concurrent programs, Batty et al. [3] establish a mathe-
matical model for the C++11 and C11 memory model. They axiomatized their
concurrency model with Isabelle/HOL. Based on the Isabelle/HOL’s code gen-
eration they derive a tool, CPPMEM, that generates and displays all possible
executions and inter-thread relationships for short C++ programs.

7 Conclusion and Future Work

In this paper, we have presented a lock-free queue implementation and compared
it with four lock-based implementations using the C++11 memory model. We
described the testing of the lock-free implementation against potential defects
and reasoned about the correctness of our implementation. We have tested the
performance on ARM, x86, and PowerPC architectures. The presented lock-
free approach outperforms simple lock-based approaches, because it allows for
multiple concurrent operations, and another lock-free implementation due to

the use of the relaxed memory model. While a fine-grained locking approach
is faster than our implementation, we posit that our queue is easier to design
and test with because its behavior follows our intuition of linearizability. Hence,
the lock-free implementation is suitable for systems where predictability and
fault-tolerance is critically important.

As a next step, we plan to experiment with different back-off schemes to im-
prove the performance under high-contention. Also, we plan to evaluate to what
extend other available lock-free data structures can benefit from predictive empty
values and the delayed helping scheme. The presented queues and tests can be
obtained from https://dl.dropboxusercontent.com/u/93927008/queue.zip.

References

1. Samy Al Bahra. Concurrency kit. http://concurrencykit.org/, 2013. retrieved on
February 21, 2013.

2. Mark Batty, Mike Dodds, and Alexey Gotsman. Library abstraction for C/C++
concurrency. SIGPLAN Not., 48(1):235–248, jan 2013.

3. Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. Math-
ematizing C++ concurrency. In Proceedings of the 38th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’11, pages
55–66, New York, NY, USA, 2011. ACM.

4. Hans-J. Boehm and Sarita V. Adve. Foundations of the C++ concurrency mem-
ory model. In PLDI ’08: Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation, pages 68–78, New York, NY,
USA, 2008. ACM.

5. Keir Fraser and Tim Harris. Concurrent programming without locks. ACM Trans.
Comput. Syst., 25(2), may 2007.

6. Faustino Frechilla. Yet another implementation of a lock-free circu-
lar array queue. http://www.codeproject.com/Articles/153898/Yet-another-
implementation-of-a-lock-free-circular, Apr 2011. retrieved on March 3, 2013.

7. Ken Greenebaum and Ronen Barzel, editors. Audio Anecdotes II: Tools, Tips, and
Techniques for Digital Audio. A K Peters/CRC Press, 2004.

8. Kjell Hedström. Lock-free single-producer - single consumer circular
queue. http://www.codeproject.com/Articles/43510/Lock-Free-Single-Producer-
Single-Consumer-Circular, Dec 2012. accessed on January 10, 2013.

9. Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, revised 1st edition edition,
2012.

10. Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

11. ISO/IEC 14882 International Standard. Programming Language C++.
JTC1/SC22/WG21 - The C++ Standards Committee, 2011.

12. Christoph Kirsch, Michael Lippautz, and Hannes Payer. Fast and scalable k-FIFO
queues. Technical Report TR2012-04, University of Salzburg, 2012.

13. Alex Kogan and Erez Petrank. Wait-free queues with multiple enqueuers and
dequeuers. In Proceedings of the 16th ACM symposium on Principles and practice
of parallel programming, PPoPP ’11, pages 223–234, New York, NY, USA, 2011.
ACM.

https://dl.dropboxusercontent.com/u/93927008/queue.zip

14. Leslie Lamport. Specifying concurrent program modules. ACM Trans. Program.
Lang. Syst., 5(2):190–222, apr 1983.

15. Patrick P. C. Lee, Tian Bu, and Girish Chandranmenon. A lock-free, cache-
efficient shared ring buffer for multi-core architectures. In Proceedings of the
5th ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, ANCS ’09, pages 78–79, New York, NY, USA, 2009 2009. ACM.

16. liblfds.org. Lock-free data structure library. http://www.liblfds.org/, 2013. re-
trieved on February 21, 2013.

17. Victor Luchangco, Mark Moir, and Nir Shavit. Nonblocking k-compare-single-
swap. In Proceedings of the fifteenth annual ACM symposium on Parallel algorithms
and architectures, SPAA ’03, pages 314–323, New York, NY, USA, 2003. ACM.

18. Paul McKenney. Memory ordering in modern microprocessors
(draft). http://www.rdrop.com/users/paulmck/scalability/paper/ order-
ing.2007.09.19a.pdf, sep 2007. retrieved February 20, 2013.

19. Maged M. Michael. Safe memory reclamation for dynamic lock-free objects using
atomic reads and writes. In PODC ’02: Proceedings of the twenty-first annual
symposium on Principles of distributed computing, pages 21–30, New York, NY,
USA, 2002. ACM Press.

20. Maged M. Michael. CAS-based lock-free algorithm for shared deques. In Euro-Par
’03, LNCS volume 2790, pages 651–660, 2003.

21. Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. Using elimination to
implement scalable and lock-free FIFO queues. In Proceedings of the seventeenth
annual ACM symposium on Parallelism in algorithms and architectures, SPAA ’05,
pages 253–262, New York, NY, USA, 2005. ACM.

22. Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc
Maranget, Jade Alglave, and Derek Williams. Synchronising C/C++ and POWER.
In Proceedings of the 33rd ACM SIGPLAN conference on Programming Language
Design and Implementation, PLDI ’12, pages 311–322, New York, NY, USA, 2012.
ACM.

23. Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. Eraser: a dynamic data race detector for multithreaded programs. ACM
Trans. Comput. Syst., 15(4):391–411, nov 1997.

24. Niloufar Shafiei. Non-blocking array-based algorithms for stacks and queues. In
Proceedings of the 10th International Conference on Distributed Computing and
Networking, ICDCN ’09, pages 55–66, Berlin, Heidelberg, 2009. Springer-Verlag.

25. Chien-Hua Shann, T. L. Huang, and Cheng Chen. A practical nonblocking queue
algorithm using compare-and-swap. In Parallel and Distributed Systems, 2000.
Proceedings. Seventh International Conference on, pages 470–475, 2000.

26. J. M. Stone. A nonblocking compare-and-swap algorithm for a shared circular
queue. In Parallel and Distributed Computing in Engineering Systems, pages 147–
152. Elsevier Science B.V., 1992.

27. Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Profes-
sional, 4 edition edition, 2013.

28. Philippas Tsigas and Yi Zhang. A simple, fast and scalable non-blocking concurrent
fifo queue for shared memory multiprocessor systems. In SPAA’01, pages 134–143,
New York, NY, USA, 2001. ACM.

29. Dmitry Vyukov. Bounded MPMC queue. http://www.1024cores.net/home/lock-
free-algorithms/queues/bounded-mpmc-queue, 2013. retrieved on February 21,
2013.

30. Anthony Williams. C++ concurrency in action: practical multithreading. Manning
Publ., Shelter Island, NY, 2012.

1 atomic int buf[];
atomic int head;

3 atomic int tail;
int bufSz;

5 void init(int size) {
7 buf = new int[size];

storeRLX (head,size);
9 storeRLX (tail,size);

bufSz = size;
11 }
13 bool enq(int v) {

atomic sec {
15 int tailPos = loadRLX (tail);

int lowerbound = tailPos − bufSz;
17 int headPos = loadRLX (head);

19 int max;
if(lowerbound < headPos)

21 max = headPos;
else {

23 CASRLX,RLX (head,headPos,headPos);
max = headPos;

25 }
27 if (tailPos >= max) return false;

29 int oldValue = loadACQ(buf[tailPos % N]);
DCASREL,ACQ(buf[tailPos % n],oldValue,v,tail,tailPos,tailPos+1);

31 }
return true;

33 }
35 int deq() {

int output;
37 atomic sec {
39 int tailPos = loadRLX (tail);

int headPos = loadRLX (head);
41 int lowerbound = headPos;

43 int max;
if(lowerbound < tailPos)

45 max = tailPos;
else {

47 CASACQ,ACQ(tail,tailPos,tailPos+1);
max = tailPos;

49 }
51 if (headPos >= max) return EMPTY;

53 output = loadACQ(buf[tailPos % N]);

55 CASRLX,RLX (head,headPos,headPos+1);
}

57 return output;
59 }

Fig. 17. Abstract Specification

Fig. 18. Results on a Freescale 24-core
PowerPC

Fig. 19. Results on an Intel Haswell

Fig. 20. Results an Intel 12-core Fig. 21. Results on an ARM dualcore

Fig. 22. Workload distribution test results
on the Freescale PowerPC 24-core, with
throughput left unnormalized to make each
curve easily visible.

	A Portable Lock-free Bounded Queue

