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ABSTRACT
The future of model checking lies in parallel and distributed com-
puting, but parallel graph search algorithms tailored to directed
model checking remains an underdeveloped area of research. In
this work, we examine the application of parallel Monte Carlo
Tree Search algorithms. We demonstrate how exploratory, ran-
domly sampled rollouts of the search space, coordinated through a
minimally communicating work-sharing protocol, can enable us to
push the boundaries on the scope and scale of problems amenable
to serial search.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: [Model Checking]; G.1.6
[Numerical Analysis]: [Optimization]; I.6.8 [Simulation and
Modelling]: [Monte- Carlo]

Keywords
model checking, Monte Carlo methods, parallel search, heuristic
search

1. INTRODUCTION
Computing today pervades all aspects of modern life, so much so
that it is said that software “is eating the world”[2]. An increas-
ing share of that computation is being carried out by concurrent
and parallel algorithms executed on multi-core and distributed
systems. However, much work remains to be done in develop-
ing practical solutions for the verification of those algorithms, the
focus of this work being on directed model checking.

The essential obstacle in all model checking is state space explo-
sion, and directed model checkers address that challenge by the
use of heuristic-guided exploration (in conjunction with pruning
techniques like partial order reduction) to cut through the myr-
iad of states to find violations. Another related technique in our
arsenal is parallel search. Parallel search is both complementary
to heuristic search and has a natural duality with metaheuris-
tic optimization (e.g. parallel search under different parameters
being functionally similar to parameter tuning); it can push the
boundaries on the scale of software that can be verified. However,
parallel model checking introduces problems of its own. Graph
search in general is non-trivial to parallelize both because it tends
to exhibit poor data locality and because of the high cost of syn-
chronization overhead[1]. Finding the right parallelization strat-
egy for a graph search problem requires tailoring the approach to
take advantage of the problem structure, and this is what leads us
to consider Monte Carlo Tree Search methods for directed model
checking.
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Following the first publication on Monte Carlo Tree Search (MCTS)
in late 2006, the past decade has yielded an abounding body of
research on the subject[10]. MCTS algorithms have led to remark-
able successes in a number of domains, most recently enabling the
triumph of AlphaGo over world-class Go player Lee Sedol, a major
milestone in the history of AI[3]. From a theoretical standpoint,
MCTS is appealing because it is a statistical anytime algorithm
that rests on a strong foundation of literature on Monte Carlo
methods. Moreover, from an implementation standpoint, it is
both memory efficient and readily parallelizable, well-suited for
multi-core and distributed applications[8][5].

In this work, we present a MCTS-based parallel search strategy
for directed model checking using Java Pathfinder. We build upon
the findings of Poulding and Feldt 2015[22], which first explored
the application of heuristic-guided MCTS in this domain. While
previous research yielded promising results, it only considered the
serial search case, and realizing MCTS for model checking in the
parallel case is challenging in its own right. The contributions of
this work are as follows: (1) a minimally communicating paral-
lel search strategy that divides labor between one or more mas-
ter instances which drive the search and look-ahead simulation
instances which randomly sample yet unexplored regions of the
state space, and (2) experimental results which demonstrate the
effectiveness of our approach.

The rest of the paper is laid out as follows. In section 2, we
present background information and prior work on parallel model
checking and MCTS. In section 3, we give a detailed description
of the implementation of our search algorithm, and in section 4
presents experimental results. Finally, in section 5, we lay out
avenues for future research.

This paper is dedicated to the memory of joint co-author Simon
Poulding, who passed away unexpectedly days before its comple-
tion.

2. BACKGROUND
The future of model checking — indeed, all formal verification —
lies in parallel and distributed computing. As Camilli 2015 has
observed, the technological shift towards these forms of computing
has guaranteed that the next great leaps forward in efficiency for
verification will depend upon them[6]. This fact was never lost on
the model checking community, but realizing that vision is easier
said than done. Research into parallel model checking began in
earnest in the early-to-mid 2000s, and was seen as promising,
but it quickly became apparent that there would be persistent,
fundamental challenges, namely communication overhead[26][16].

Ideally, we would like to limit redundant computation of states
so as to maximize the amount of useful parallel work. The näıve



solution is to keep a globally synchronized set of “seen” states,
but this often ends up being prohibitively expensive. In response
to this, a number of papers followed that attempted to realize
non-communicating or minimally communicating parallel search
in model checking[12][17][24][13][23][4]. These include strategies
such as dividing up the search into non-overlapping partitions or
executing many independent searches in parallel. Non-communicating
parallelism, however, has limits of its own, such as the fact that,
for sufficiently large and irreducible problems, the memory limits
of an individual machine becomes a barrier without better heuris-
tics or further limiting search completeness.

These conditions, we argue, present a fertile ground for the devel-
opment of new model checking search techniques based on MCTS-
style approaches. The value of random sampling, which lies at the
core of Monte Carlo methods, has been established in the liter-
ature. We call particular attention to Dwyer et al. 2006[12],
an exploratory study of randomized parallel search applied to
model checking, which found that random search could deliver
competitive results given adequate computing power, and Grosu
and Smolka 2005, which demonstrated that Monte Carlo tech-
niques could be used to set bounds on the likelihood of random-
ized walks uncovering an error[15]. However, as noted by Pelánek
et al. 2005, pure random search can easily become trapped or
fail to sufficiently explore common classes of state spaces such
those with many diamond-like structures (e.g. mutual exclusion
algorithms)[21]. The authors of that work argue that random
search can be enhanced by using, among other things, periodic
re-initialization of random walks, sampling multiple walks, and
augmenting the search with heuristic guidance; MCTS allows for
all of these features.

MCTS algorithms use random sampling to carry out simulated
explorations or rollouts of the search space ahead of the current
position of the search. As demonstrated by Chaslot et al. 2008,
there are numerous ways in which rollouts can be parallelized[8],
the intermediate results of which can either be cached or elimi-
nated, depending on resource constraints. Likewise, it is possible
to prune subtrees which did not yield promising rollouts, giving
yet another way to manage the resource consumption. More-
over, MCTS search algorithms are easily paired with all manner
of heuristics to shape the search.

3. IMPLEMENTATION
3.1 Nested Monte-Carlo Search
Arguably the most successful application of Monte-Carlo tree
search algorithms is playing one side of complex two-player games
such as Go. We may equate the search for property violations by a
concurrent program to a game in which a program state is equiv-
alent to a game state, and the transitions out of a program state
are the ‘moves’ that the player may make. However, the analogy
is to a single-player rather than two-player game since during the
search for a property violation, there is no equivalent of an op-
ponent who makes competing moves towards an objective that is
the opposite of our own.

In this work, we apply a form of MCTS called Nested Monte-Carlo
Search (NMCS) originally proposed by Cazenave and demon-
strated to be effective on single-player games[7]. The lookahead
policy is defined recursively given a nesting parameter N ∈ Z+
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and is straight-forward. At the current state, exactly one simu-
lation is performed for each possible move. If the nesting factor
is zero, then this means making random moves until an end state
is reached. Otherwise, the simulation carries out its own instance
of NMCS with a nesting factor of N − 1 on that move’s decen-
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Figure 1: An illustration of one iteration of the Nested
Monte-Carlo Search algorithm. The central grey circle
represents the current state, from which there are three
possible transitions to states A, B, and C. The paths from
these three states are simulations. The reward heuristic
for each state on the simulation path is shown in the
black square.

dants. This use of nesting is intended to reach a balance between
exploration of the graph and exploitation of promising subtrees
without the need for parameter tuning.

The complexity of conventional NMCS is O(bNhN+1) where b
is the branching factor and h is the height of the tree[18]. In
Poulding and Feldt 2015, one of the authors of this paper proposed
an enhancement to the algorithm (which we will call hl) that
limits the number of moves taken by each simulation [22]. This
was for the sake of efficiency: reaching the end state when model-
checking may require very many random moves. Results revealed
that looking ahead a smaller number of states could still provide
adequate guidance to the search. In this work, we have also noted
that the branching factor, which for our problems of interest can
excceed what is common for many games, is a potential bottleneck
in a parallel implementation as each worker can end up with a
backlog of subtrees to expand. For this reason, we also offer a
parameter (bl) that permits the search to only expand a limited,
randomly selected number of descendants at each depth.

Additionally, in the application of the algorithm described here,
we make a further enhancement. Instead of reporting the value
of the last state visited during the simulation, as is done with
standard NMCS, the heuristic is calculated at each state visited
during the simulation, and the reward used to choose the move
taken by the algorithm is the best value over the path of the simu-
lation. The motivation for this enhancement is that if a simulation
traverses through a region of the state space where states have a
high value of heuristic but ends in a lower value region, then the
simulation is rewarded on the basis that the move could lead to
the high-value region.

Figure 1 illustrates one iteration of algorithm. From the current
state (the circle filled in grey), there are three possible transitions
leading to states A, B, and C. During this iteration, the algorithm
must decide which of these three states becomes the current state
at the next iteration. To do this, one simulation is performed
from each of the three states following a path which, in this case, is
parameterized to be at most 4 transitions long; for clarity, possible
states other than those actually visited by the simulations are
not shown in the figure. At each state on the simulation path,



the reward heuristic is measured, and this is shown in the black
square annotating the states. In this example, higher rewards are
better. The simulation starting from state A encounters the best
reward value (3) during the simulations, and so the transition to
A is taken and A becomes the current state in the next iteration
of the algorithm. Note that that a best-first search (equivalent to
NMCS with a simulation path length of 0) would have chosen to
move to state B since it has the best reward value of the states A,
B, C; while if the reward were measured only at the state at end
of the simulation during NMCS, then state C would have been
chosen.

3.2 Parallelization
The independent simulations performed by Monte Carlo tree search
algorithm present an opportunity for parallelization. This is par-
ticularly true for NMCS in which at each iteration the number
of simulations and their starting states are fixed in advance; in
other Monte-Carlo tree search algorithms the result of one simula-
tion determines the starting state for the subsequent simulations.
In this paper, we investigate such a parallelized configuration in
which a master JPF search process distributes the work of the
simulations to separate slave JPF processes. When the number
of transitions from each state is large and/or the simulation path
length is long, such a configuration may permit the effective uti-
lization of parallel computing architectures to search large state
spaces.

3.3 JPF Implementation
We implemented Nested Monte-Carlo Search in JPF as a subclass
of gov.nasa.jpf.search.Search. We note that NMCS requires
very few model states to be stored and so has a relatively low
memory requirement: in our implementation we explicitly save
only the ‘current’ state so that JPF may quickly return to this
state after performing a simulation.

When the search is parallelized, the master and multiple slave
search processes are separate JPF instances running in their own
JVM (for example, on different host machines). In order to ex-
change state information between the master and slaves, one op-
tion would have been to serialize and then send the current VM
state. However, for any reasonably large program-under-test, this
state would be large and therefore incur a significant timing over-
head that could limit the efficiency of the parallelized search.

Instead, we identify states by the sequence of moves taken to
reach it from the initial root state , i.e. the indices of transitions
chosen from each choice generator. The randomization of choice
generators is disabled so that the ordering of the choices for each
choice generator is the same for both master and slave, and so
only the sequence of choice indices is necessary to identify the
same state in each of the JPF instances.

For large models, this sequence could be long and therefore might
still incur a significant timing overhead in not only communicat-
ing the sequence but also moving the slave to the correct state in
order to run a simulation by applying the sequence of transitions.
However, if we ensure that a slave’s current state is always a state
on the path from the root state to the master’s current state (i.e.
either the master’s current state or a current state it had at an
earlier iteration of the search), it is easy to identify and commu-
nicate the (in general) short subpath between the slave’s current
state and the master’s current state. The slave can then easily
move to the same current state as the master by following the (in
general) small number choices in this subpath. After running a
simulation, the slave restores its state to the last-known master

state so as to ensure the slave’s current state is on the path to the
master’s current state.

The communication between master and slave JPF processes is
implemented using Java remote method invocation (RMI) tech-
nology. In this configuration, the master search process is an RMI
server that listens for connections from slave search processes that
are RMI clients. The connections from slave processes are to re-
quest new simulations to run and to return the results of these
simulations.

4. EVALUATION
In this section, we present preliminary experimental results that
showcase the application of our approach. We begin with our
benchmark of choice, the canonical Dining Philosophers problem,
using the implementation provided by the SIR repository[11]. We
chose this benchmark because the state space is non-trivial for
an uninformed search (e.g. BFS, purely random) to navigate due
to the (1) high branching factor, (2) the fact there is only one
deadlock state that requires at least N steps to reach, and (3)
the search can move away from a deadlock state by allowing a
philosopher to acquire both locks that it needs. Realistically, the
mutual exclusion protocol described by this benchmark is more
complex than what is encountered in the wild, but it allows us
to simulate searches of large, heavy-weight programs with latent
bugs that are unlikely to be found by pure chance.

Our baseline heuristic (and the guiding heuristic used by the
NMCS algorithm) is the most-blocked structural heuristic which
comes standard with JPF and was first described in Groce and
Visser 2002[14]:

hmostblocked = Nalive −Nrunnable (1)

This is an intuitive choice: maximizing the number of blocked
threads leads us to a state where all threads are unable to make
progress. The most-blocked heuristic performs favorably on this
benchmark, with the time/space requirements to find the bug be-
ing linear with respect to the number of philosophers. This can
only carry us so far: as we pile on many hundreds of philosophers,
the memory requirements for storing all the states begins to ex-
ceed the limits of RAM on commodity hardware. Fortunately, as
we can see on Figure 2, there remains a great deal of room for
improvement.

Borrowing a page from Milewicz 2016[20], we throw the kitchen
sink at the problem: we apply an estimation-of-distribution of
algorithm by sampling small versions of it and then use linear
regression to craft a weighted combination of various heuristics
(including most-blocked)[25], upon which we apply an ant colony
optimization meta-heuristic[9], and upon which we then apply
a meta-evolutionary hyperparameter tuner on a handful of trial
runs. The resulting heuristic brings us much closer to optimal
performance.

Alternatively, we can apply NMCS (one master, four workers,
nesting limit of one, simulation depth of four) to the most-blocked
heuristic, and we can achieve competitive results without the
need for prior information or iterative fine-tuning (though our
approach could incorporate these as well). However, showcasing
those results without qualifying them would be extremely disin-
genuous. Our implementation requires substantially more com-
putation overall, introduces communication overhead, and may
require restarts that further degrade time performance. With



Figure 2: Above, a graph illustrating the range of perfor-
mance of NMCS from the perspective of the master in-
stance with comparisons to serial explorations using the
baseline heuristic and a hyper-meta-heuristic. The re-
sults show that augmenting heuristic search with Monte
Carlo sampling can be very powerful. Below, a graph of
the time elapsed by runs of parallel and serial variants of
our NMCS implementation.

this in mind, we will detail the results of experiments designed to
test the boundaries on which NMCS can accomplish.

We performed our experiments on a cluster of eight 20-core Intel
Xeon E5-2698 v4 nodes each with 32 GB of available RAM, made
available by the College of Saint Benedict & Saint John’s Univer-
sity. We used a setup of one master and four workers, each located
on different machines. We ran JPF on the Dining Philosophers
problem with thread counts of 50, 100, 200, and 400, we tested
with simulation depths and choice limits of 4, 8, and 16, and a
heap limit of 6 GB per search instance. Because the outcome of
the NMCS is partially random, we repeated each run 10 times
with a timeout limit of 600 seconds. Additionally, we compared
results between serial and parallel executions of NMCS. We de-
scribe the results below.

As expected, the parallel implementation of NMCS is considerably
faster than the serial version. Across all experiments, the parallel
implementation ran 16.73x faster on average. A breakdown by
problem size (from 50 to 400 threads) has the parallel implemen-
tation 22.84x, 22.53x, 16.55x, and 5x faster than the serial; this
is to say that for a fixed number of workers against an increasing
workload, the speed-up is expected to be roughly proportional to
the number of workers, the simulation step being embarassingly

parallel. Moreover, 99% of all parallel runs completed within the
(generous) time limit, compared to 65% of serial runs.

The performance of our NMCS variant is modulated by the choice
limit (bl), which constraints the number of simulations that the
master can request at a search step, and the simulation depth
(hl), which constrains the amount of computation involved in a
simulation. Here we observed two trends. First, in the absence
of bl (no constraint with respect to branching factor), the par-
allel speed-up evaporates completely as the philosopher thread
count increases; this is because, for a fixed number of workers, in-
creasing the branching factor means more convoying of simulation
requests and a growing backlog of simulations to be completed.
However, there was no correlation between the choice of bl and
the relative performance of the search; failing to explore subtrees
is counterbalanced by the fact that the search can repeat itself.
As for the choice of simulation depth, it is worth stressing that
more is not always better. Clearly, a simulation depth of 1 has
the master requesting workers to evaluate a single state and re-
port the heuristic value, which is not efficient. However, we found
that for the particular benchmark in question, the best results
were seen at a simulation depth of 4. Aside from the fact that
deeper simulations mean that the master spends more time wait-
ing on workers, we only return the best heuristic value of states
visited in a rollout, and this means that larger simulation depths
are not guaranteed to be more useful (e.g. at a simulation depth
of 64, an optimally interesting state 63 states away and another 5
states away are equally appealing). In any case, that there is an
optimal value for the simulation depth hints at the possibility of
using some form of online parameter tuning to converge on that
value.

With regards to the average number of states explored by the
master instance under NMCS is 4x lower than that of the base-
line heuristic search. However, the number of states explored by
the master is only (on average) 5% of the total number of states
explored by the master and its workers combined. Overall, our
implementation of NMCS explores 5x more states than the base-
line search, but the majority of that computation is delegated to
workers performing simulations, the intermediate results of which
do not need to be retained by the master.

Finally, in terms of counterexample length, a measure of solution
quality, the results for NMCS for all choices of parameters and
all runs are virtually identical to those of the plain, most-blocked
heuristic. This is to say that while look-ahead sampling reduces
the amount of unnecessary exploration by the master instance,
the search is still driven by the heuristic and is likely to produce
solutions of similar quality.

5. CONCLUSION
In this paper, we have presented a translation of parallel Monte
Carlo Tree Search to the domain of directed model checking. Our
preliminary results are promising, but we have merely scratched
the surface of what is possible. It is likely the case that commu-
nication between instances could be streamlined so as to reduce
overhead further; we can envision schemes in which simulations
by workers and exploration by the master are overlapped, maxi-
mizing the amount of useful parallel work.

It is also clear that our approach to MCTS could be further
improved with the use of meta-heuristics and parameter tuning
strategies. In particular, our future work aims to augment ran-
dom sampling with heuristics derived from prior static analysis
ala Milewicz and Pirkelbauer 2017[19].
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