
Position Paper: Towards Usability as a First-Class
Quality of HPC Scientific Software

Reed Milewicz
Sandia National Laboratories
Email: rmilewi@sandia.gov

Paige Rodeghero
Clemson University

Email: prodegh@clemson.edu

Abstract—The modern HPC scientific software ecosystem is
instrumental to the practice of science. However, software can
only fulfill that role if it is readily usable. In this position
paper, we discuss usability in the context of scientific software
development, how usability engineering can be incorporated into
current practice, and how software engineering research can help
satisfy that objective.

I. INTRODUCTION

The future of the scientific enterprise requires a sustained,
robust, and reliable ecosystem of scientific software. This is
necessary to meet the ever-growing demands for scalable simu-
lation and data analysis, with some authors suggesting that we
are moving towards a paradigm of science that is equal parts
computational, empirical, and theoretical [1]. While progress
has been made, software as an instrument has not yet reached
a level of maturity comparable with the more conventional
tools of empirical and theoretical science. A 2016 report by
the National Strategic Computing Initiative (NSCI) argued
the current “ecosystem of software, hardware, networks, and
workforce is neither widely available nor sufficiently flexible
to support emerging opportunities” [2]; the strategic plan
highlighted the need for “a portfolio of new approaches to
dramatically increase productivity in the development and use
of parallel HPC applications” as a focus for future research.

It is clear that the demand for scientific software can no
longer be met by individuals working in isolation, and fos-
tering more effective collaboration is a necessity [3]. Modern
high-end scientific computing applications rely on complex
software stacks assembled from an ecosystem of software
packages developed by many teams across different disci-
plines. Researchers would not be able to affordably develop
their application codes without the support of community
software, but using other’s code is an exercise in trust, trust that
the code can perform its intended function both now and in the
future. Unfortunately, scientists frequently use (and misuse)
software without understanding how that software actually
works [4], and acquiring sufficient understanding is time-
consuming [5]. In other words, becoming a literate user of or
contributor to a scientific software package carries opportunity

Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. SAND-2019-1048C.

costs, yet defering those costs poses a risk to informed trust
and, consequently, the value that the software provides.

As we approach the exascale era and beyond, the scientific
software community faces a crisis created by the confluence
of disruptive changes in computing architectures and demands
for greatly improved simulation capabilities. This crisis brings
with it a unique opportunity to fundamentally change how
scientific software is designed, developed, and supported. This
is especially true for software developed at US national labo-
ratories. Keyes et al. 2013 observes that present and future ob-
jectives of the US Department of Energy require multiphysics
solutions that bring together many different codes, disciplines,
and institutions [6]; accordingly, the need for performance and
correctness must be balanced against the need for ease-of-use
across increasingly complex software stacks. For this reason,
we argue that usability must become a first-class software
quality moving forward. By usability, we mean the capability
of the software product to be understood, learned, used and
attractive to the use, when used under specified conditions [7].
Easing the pathway to proficiency by making the software
more accessible and understandable enables users to make
better use of that code and to be more confident in the results.

Usability engineering is well-practiced in the conventional
software industry, but it currently represents “the most ig-
nored and unattended phase of scientific software solution
development” [8]; techniques for studying usability are not
as prevalent or mature among scientific software developers
as those that measure correctness or performance. Likewise,
research into usability engineering for scientific software is
still nascent (see [9],[10], and [11]). This is where the software
engineering research community can be of great help, by
identifying and demonstrating the effectiveness of tailored
strategies for creating usable scientific software.

II. OPEN QUESTIONS; PROMISING DIRECTIONS

While usability is a topic that concerns all stages of the
software lifecycle, the long lifespan of HPC research codes
means that our projects of interest are usually “in the middle”.
For example, within the US Exascale Computing Project, the
median age of an application code is 7 years. An emphasis
must be placed on tools and techniques that are (1) well-
defined, (2) incremental, and (3) accommodating of the reality
that projects have already made significant commitments in
their design and implementation. Our focus therefore is on



concrete tools and strategies that could be immediately applied
in the form of team policies and project deliverables, in
particular usability evaluation methods (UEMs). Borrowing
from Fernandez et al., we define a UEM as “a procedure
which is composed of a set of well-defined activities for
collecting usage data related to end-user interaction with a
software product and/or how the specific properties of this
software product contribute to achieving a certain degree of
usability.” [12]. Topics of interest include:

• The mainstay of UEMs is user testing, where evaluators
observing participants interacting with software in order
to identify usability issues. These include thinking-aloud
protocols (where the user describes their actions) and
co-discovery learning (where pairs of users must work
together to complete a task) [13]. While user testing is
a tried-and-true method, it is an expensive and time-
consuming process, and it isn’t yet clear about how user
testing fits into the scientific software workflow. How and
when should user testing be employed, and under what
conditions will user testing be most effective?

• Based on techniques in cognitive psychology, a cognitive
walkthrough (CW) method consists of evaluators taking
on the role of a user and stepping through interactions
with the product, and enabling evaluators to critique
learnability and memorability of a software system [14].
This is most often accomplished through the use of
personas, which are detailed models of users that factor in
their background knowledge, motivations, and attitudes.
CWs are advantageous because they can be applied at any
stage of the life cycle, and do not require user participa-
tion, but they do require accurate and informative user
models. How do we take what we know about scientific
software developers and turn it into an actionable model?
Are these models generalizable across disciplines, or
would they need to be tailored to a particular application
domain?

• Checklists for heuristic evaluation consist of holistic
statements about the desirable properties of a system and
how they pertain to usability; as an example, Rusu et
al. 2011 provides usability heuristics for grid comput-
ing frontends, such as the need to provide “shortcuts,
abbreviations, accessibility keys or command lines for
expert users,” and showcases their application to real-
world systems [15]. Checklists are low-hanging fruit in
that they are easy to apply, but the contents have yet to
be determined.

• Analytical modeling methods provide an engineering-
based approach to predicting usability; this includes task
environment analysis, creating a model that maps users’
goals to interactions with the software system [16]. We
argue that modeling use cases in a formal way gives
developers more control over the usability of a scientific
software system under evolution. For example, Dubey et
al. describes the growth of the FLASH library, and the
snowball effect of acquiring users and use cases across

many different domains[17]. Each use case may involve
different features, and there needs well-maintained, easy-
to-follow pathway through the library for that use case.
There is a need to adapt and prove such techniques in the
context of scientific software development.

III. CONCLUSION

The value of scientific software is intimately tied to its
usability, the ability to pick it up and put it to work answering
a scientific question. However, fitting usability engineering
into the current state of practice remains an open challenge.
For this reason, our position paper serves as a call to action
and an invitation for dialogue among software engineering
researchers.

REFERENCES

[1] G. Bell, T. Hey, and A. Szalay, “Beyond the data deluge,” Science, vol.
323, no. 5919, pp. 1297–1298, 2009.

[2] J. P. Holdren and S. Donovan, “National strategic computing initiative
strategic plan,” National Strategic Computing Initiative Executive Coun-
cil Washington United States, Tech. Rep., 2016.

[3] M. J. Turk, “Scaling a code in the human dimension,” in Proceedings
of the Conference on Extreme Science and Engineering Discovery
Environment: Gateway to Discovery. ACM, 2013, p. 69.

[4] L. N. Joppa, G. McInerny, R. Harper, L. Salido, K. Takeda, K. O’hara,
D. Gavaghan, and S. Emmott, “Troubling trends in scientific software
use,” Science, vol. 340, no. 6134, pp. 814–815, 2013.

[5] J. Y. Monteith, J. D. McGregor, and J. E. Ingram, “Scientific research
software ecosystems,” in Proceedings of the 2014 European Conference
on Software Architecture Workshops. ACM, 2014, p. 9.

[6] D. E. Keyes, L. C. McInnes, C. Woodward, W. Gropp, E. Myra,
M. Pernice, J. Bell, J. Brown, A. Clo, J. Connors et al., “Multiphysics
simulations: Challenges and opportunities,” The International Journal
of High Performance Computing Applications, vol. 27, no. 1, pp. 4–83,
2013.

[7] “International standard iso/iec 9126-1. software engineering – product
quality – part 1: Quality model,” International Organization for Stan-
dardization / International Electrotechnical Commission, Geneva, CH,
Standard, 2001.

[8] Z. Ahmed, S. Zeeshan, and T. Dandekar, “Developing sustainable
software solutions for bioinformatics by the butterfly paradigm,”
F1000Research, vol. 3, 2014.

[9] D. Sloan, C. Macaulay, P. Forbes, and S. Loynton, “User research
in a scientific software development project,” in Proceedings of the
23rd British HCI Group Annual Conference on People and Computers:
Celebrating People and Technology. British Computer Society, 2009,
pp. 423–429.

[10] L. Ramakrishnan and D. Gunter, “Ten principles for creating usable
software for science,” in e-Science (e-Science), 2017 IEEE 13th Inter-
national Conference on. IEEE, 2017, pp. 210–218.

[11] M. List, P. Ebert, and F. Albrecht, “Ten simple rules for developing
usable software in computational biology,” PLoS computational biology,
vol. 13, no. 1, p. e1005265, 2017.

[12] A. Fernandez, E. Insfran, and S. Abrahão, “Usability evaluation methods
for the web: A systematic mapping study,” Information and software
Technology, vol. 53, no. 8, pp. 789–817, 2011.

[13] J. Nielsen, Usability engineering. Elsevier, 1993.
[14] C. Wharton, “The cognitive walkthrough method: A practitioner’s

guide,” Usability inspection methods, 1994.
[15] C. Rusu, S. Roncagliolo, G. Tapia, D. Hayvar, V. Rusu, and D. Gorgan,

“Usability heuristics for grid computing applications,” Proceedings
ACHI, pp. 53–58, 2011.

[16] M. Y. Ivory and M. A. Hearst, “The state of the art in automating us-
ability evaluation of user interfaces,” ACM Computing Surveys (CSUR),
vol. 33, no. 4, pp. 470–516, 2001.

[17] A. Dubey, K. Antypas, A. C. Calder, C. Daley, B. Fryxell, J. B.
Gallagher, D. Q. Lamb, D. Lee, K. Olson, L. B. Reid et al., “Evolution
of flash, a multi-physics scientific simulation code for high-performance
computing,” The International Journal of High Performance Computing
Applications, vol. 28, no. 2, pp. 225–237, 2014.


