
Lightweight Software Process Improvement using
Productivity and Sustainability Improvement

Planning (PSIP)
Michael A. Heroux , Elsa Gonsiorowski* , Rinku Gupta* , Reed Milewicz* ,

J. David Moulton* , Gregory R. Watson* , Jim Willenbring* , Richard J Zamora*◦ ,
Elaine M. Raybourn*†

Sandia National Laboratories, Albuquerque, NM USA
Lawrence Livermore National Laboratory, Livermore, CA USA

Argonne National Laboratory, Lemont, IL USA
Los Alamos National Laboratory, Los Alamos, NM USA

Oak Ridge National Laboratory, Oak Ridge, TN USA
NVIDIA, Santa Clara, CA USA

Email: maherou@sandia.gov, gonsie@llnl.gov, rgupta@anl.gov, rmilewi@sandia.gov,
moulton@lanl.gov,watsongr@ornl.gov,jmwille@sandia.gov,rzamora@nvidia.com,

emraybo@sandia.gov

Abstract—Productivity and Sustainability Improvement Plan-
ning (PSIP) is a lightweight, iterative workflow that allows
software development teams to identify development bottlenecks
and track progress to overcome them. In this paper, we present
an overview of PSIP and how it compares to other software
process improvement (SPI) methodologies, and provide two case
studies that describe how the use of PSIP lead to successful
improvements in team effectiveness and efficiency.

Index Terms—software development, software engineering,
software process improvement

I. INTRODUCTION

The Department of Energy (DOE) Exascale Computing
Project (ECP) provides an opportunity to advance compu-
tational science and engineering (CSE) through high per-
formance computing (HPC). Central to the project is the
development of next-generation applications that can fully
exploit emerging architectures for optimal performance and
provide high-fidelity, multiphysics, and multiscale capabilities.
At the heart of the effort is the need to improve developer pro-
ductivity, positively impacting product quality, development
time, staffing resources, and software sustainability, reducing
the cost of maintaining, sustaining, and evolving software
capabilities in the future.

This paper presents the Productivity and Sustainability
Improvement Planning (PSIP) process: a lightweight, iterative
workflow where teams identify their most urgent software
development and sustainability bottlenecks and track progress

∗: These authors contributed equally to this work.
◦: Author’s work was conducted while employed by Argonne National

Laboratory.
†: Corresponding author.

on work to overcome them. Through the PSIP process, teams
are able to realize process improvements, without a huge
disruption to any current development processes.

The contributions of this paper are:
• We compare PSIP with other software process improve-

ment (SPI) methodologies
• We present the PSIP process, a lightweight software

process improvement framework.
• We discuss two case studies where a PSIP cycle was

implemented by an existing software development team
with the help of a facilitator.

II. BACKGROUND

Techniques for software process improvement (SPI), which
aim to assess, design, and realize effective development pro-
cesses, have long represented an evolving area of research.
While “classic” SPI frameworks such as CMM(I) or SPICE
have existed for three decades [1][2][3], a comprehensive
review by Kuhrmann et al. found that from 1989 to 2016 an
average of 11 new or customized SPI methods were introduced
per year [4]. One hypothesis put forward by the authors is
that process improvement is a context-specific activity and
that methods must be adapted to their context in order to be
successful. This trend towards adaptation echoes recent studies
that suggest most software companies today use individualized
development processes that are hybrids of different method-
ologies and philosophies [5][6]. However, the proliferation
and turnover in SPI methods has stalled the development of
any unifying theory or long-term empirical evaluation showing
what makes an SPI method effective.

Against this backdrop, we introduce the Productivity and
Sustainability Improvement Planning (PSIP) process. PSIP is



neither wholly new nor unsupported but is instead a tailored
approach that builds upon previous SPI approaches; likewise,
PSIP is not all-encompassing but is instead a lightweight
toolkit that can be incorporated into existing CSE software
development workflows. In that sense, we situate PSIP in
the context of SPI methods. PSIP breaks from classic first
wave SPI (such as CMM(I) or SPICE, or non-software meth-
ods translated to software like ISO 9000 or Six Sigma),
in that it trades comprehensive standards and certification-
driven assessment for self-defined, internally-driven goals. It
does, however, carry forward first wave ideas such as having
staged models of improvement like CMM(I), in the form of
progress tracking cards. Additionally, PSIP is more aligned
with numerous second wave SPI approaches which incorporate
lean and agile thinking into their methods; it adopts their
emphasis on iterative improvement and continuous learning.

PSIP is, at its core, an instantiation of the Plan-Do-Check-
Act management cycle (PDCA, also known as Plan-Do-Study-
Adjust), first described by Deming in 1950 [7], which provides
the intellectual foundation for much of the modern process
literature (including SPI methods and Agile as a philosophy)
and is itself a translation of the scientific method to the study
of work process. It is both a method to be used by an individual
or with a team, and a method to be taught to a team, with
the team driving the improvement process. This situates PSIP
within a constellation of bottom-up, inductive SPI methods as
characterized by Stojanov 2016 [8]. These include QIP [9],
AINSI [10], LMPAF2 [11], and iFLAP [12]. Each of these
methods emphasizes collaborative discovery of goals, tailored
improvement solutions, and is designed to be lightweight to
support small, resource-constrained organizations. However,
they differ in their approaches.

QIP and AINSI (an implementation of QIP) differ from
PSIP in that both use a Goal-Questions-Metrics approach
to create measures for goals whereas PSIP utilizes progress
tracking cards (PTC) that express either quantitatively- or
qualitatively-defined goal states. PSIP, like LMPAF2, may
utilize a moderator to conduct interviews in order to construct
documentation that captures team’s practices, and draw out
targets for process improvement. However, LMPAF2 focuses
specifically on maintenance activities and relies on frequent
feedback sessions with the moderator to track progress. Fi-
nally, iFLAP conducts interviews with individuals drawn from
across an organization and triangulates improvement activities
by comparing different interview results (as opposed to a group
interview), and the assessor(s) are responsible for creating a
prioritization scheme for improvement targets (PSIP has no
analogous concept).

Within the context of scientific software research and de-
velopment, SPI is an undeveloped territory. The most recent
notable mention came in 2015; Mesh et al. reported plans to
develop a Scientific SPI Framework (SciSPIF) by cataloging
common decision factors and project characteristics and their
relationships to software engineering practices, ideally realized
as an online self-assessment tool [13]. Further work in this area
is needed. In 2006, Baxter et al. observed that a lack of basic

knowledge about development processes was a significant
challenge for the scientific software community [14], but
recent studies suggest the situation is now more nuanced.
A 2019 survey of scientific software developers by Eisty et
al. found that respondents not only saw value in software
process, but even “[preferred] using a defined software de-
velopment process” over ad hoc approaches [15]. This may
be a reaction to the increasing importance of software in
science: a 2018 survey by Pinto et al. found that 8 out of
10 researchers reported spending “more time” or “much more
time” developing software than they did 10 years ago[16]. We
argue that the challenge moving forward is to cultivate ways of
doing software work that align with the needs of the scientific
software community.

Scientific software teams are typically focused on obtaining
scientific results from the software they write. Funding is
for generating results, not software. This is a competitive
process and teams cannot usually expend much time or effort
outside of writing the software features that support generat-
ing new results. Therefore, any productivity or sustainability
improvements must be incremental and integrated into the
primary feature development process. Bug fix or refactoring
releases are rare. In our experience, scientific software teams
typically have little or modest formal software engineering
training. They may be aware of formal terminology such
as software lifecycle, requirements elicitation and technical
debt, but often have incomplete or incorrect understanding.
Furthermore, these teams have an inherent skepticism about
formal, heavyweight approaches that might significantly delay
their current scientific activities or require large investments
before seeing benefits. In this context, a lightweight, adapt-
able, iterative and informal approach to improving developer
productivity and software sustainability is necessary.

III. METHODOLOGY

The Interoperable Design of Extreme-scale Application
Software (IDEAS-ECP) [17] team conducts research on top-
ics of developer productivity and software sustainability in
CSE domains. Its PSIP efforts focus on methodologies for
improving productivity and sustainability by working with
CSE software teams to identify opportunities to iteratively and
incrementally improve software team practices and processes.

The objectives of the PSIP process are to capture and convey
the practices, processes, policies, and tools of a given software
project. The PSIP workflow is intended to be lightweight and
fit within a project’s planning and development process. It
is not meant to be an assessment or evaluation tool. Instead
PSIP captures the tacit, more subjective aspects of team
collaboration, workflow planning, and progress tracking. Addi-
tionally, in the potential absence of planning and development
processes, and as scientific software teams scale to larger,
more diverse, aggregate teams, unforeseen disruptions or inef-
ficiencies can often impede productivity and innovation [18].
PSIPs are designed to bootstrap aggregate team capabilities
into best practices, introduce the application of appropriate



resources, and encourage teams to adopt a culture of process
improvement.

At its core, the PSIP framework is an iterative, incremental,
repeatable, cyclic process for improvement planning. The
cyclic nature of the PSIP process enables software develop-
ment teams to improve overall project quality and achieve
science goals by encouraging frequent iteration and reflection.
The multi-step, iterative PSIP Workflow conceived by the first
author is described below (see Figure 1). Beginning at the
start located at the left of Figure 1, software teams may work
through these steps on their own, or with the assistance of a
PSIP facilitator:

1) Summarize Current Project Practices: The first phase
involves briefly documenting current project practices.
It is important to record the original state of the project
to both provide a baseline for measuring progress and to
help identify areas that are ready for improvement. We
find it important to use plain language when defining
current project practices to reduce misunderstanding of
software engineering terms that might be vaguely or
incorrectly understood by the software team, whose
member may not be formally trained in software en-
gineering concepts.

2) Set Goals: Completing this step typically brings to
light project practices that can benefit from a focused
improvement effort. Although any number of goals may
be identified in this step, a limited set is selected at any
given time to best impact the project and are achievable
within a predictable span of time (a few weeks to a few
months). Goals not chosen at this time may be tabled
for future iterations.

3) Construct a Progress Tracking Card (PTC): A PTC
is a brief document containing the target, or goal of
the planning activity, title of the topic of improvement,
and a step-by-step list of activities or outcomes that
incrementally lead to improvements in team effective-
ness and efficiency. Each practice will have its own
PTC. Teams may select PTCs from the PTC catalog1;
or define their own PTC or modify PTCs found in the
catalog. The purpose of the PTC is to help teams set and
achieve improvement goals. The PTC is not a tool for
external assessment or comparison with other projects.
In fact, since PTCs are custom-designed for each project,
comparisons are typically not possible.

4) Record Current PTC Values: In order to establish base-
line capabilities and track progress, teams record the
initial values (0-5 are suggested) for each PTC.

5) Create a Practice Improvement Plan: In order to in-
crease the values in a PTC (corresponding to improve-
ments in software productivity and sustainability), teams
develop a plan to reach a higher value for each PTC.

6) Execute the Plan: Team efforts are focused on improving
the selected practices described in the PTC. At first,
teams may see a slowdown, as they work to start or

1https://github.com/betterscientificsoftware/PSIP-Tools/tree/master/PTCs

improve a given practice. It is possible for teams to use
complementary SPI methods in executing their plan. The
slowdown in most cases is proportional to the amount
of change, but ideally teams should see steady progress
on a weekly basis after the initial phase and be able to
complete execution of a particular practice improvement
within a few months.

7) Assess Progress: During execution, teams assess, and
determine the rate of progress each week. They adjust
their strategy for success if needed. If progress is delayed
too long, teams usually start the next PSIP iteration.

8) Repeat: The PSIP process is iterative. Continual process
improvement is a valuable attribute for any software
project. The PSIP process may be used to guide im-
provement planning within software projects and across
aggregate projects.

During a PSIP process or at its conclusion, teams may
elect to share their PSIP PTCs, best practices, and/or lessons
learned with other teams. Teams may share their results with
the community in a variety of ways including contributing
blog posts on PSIP progress to the Better Scientific Software
(BSSw) website2, presenting lessons learned in the HPC
Best Practices for HPC Software Developers webinar series3,
and by modifying, curating, or creating tools such as new
PSIP templates, PTCs, or resources for inclusion in the PSIP
catalog4.

IV. CASE STUDIES

In this section, we present two case studies where an exist-
ing software development team collaborated with a facilitator
to work through the PSIP process.

A. EXAALT

The Exascale Atomistics for Accuracy, Length and Time
(EXAALT) project5 is a part of the Chemistry and Materials
Applications area of the Exascale Computing Project. It is a
materials modeling framework designed to leverage extreme-
scale parallelism to produce accelerated molecular dynamics
simulations for fusion and fission energy materials challenges.
The official team comprises approximately 10 researchers at
Los Alamos National Laboratory (LANL) and Sandia National
Laboratories (SNL) working on four sub-projects. While two
of these sub-projects are driven by a handful of people,
the others are larger open-source efforts with many external
contributors.

The EXAALT team was keen to partner with IDEAS-ECP
from the very beginning because they recognized the potential
to improve their software engineering practices, particularly
in the area of continuous integration (CI). Since the project

2https://bssw.io
3https://bssw.io/events/best-practices-for-hpc-software-developers-webinar-

series
4See PSIP-Tools repo: https://betterscientificsoftware.github.io/PSIP-

Tools/, and specifically https://github.com/betterscientificsoftware/PSIP-
Tools/blob/master/PSIP-Overview.md for further elaboration.

5https://www.exascaleproject.org/project/exaalt-molecular-dynamics-at-the-
exascale-materials-science



Fig. 1: The Productivity and Sustainability Planning (PSIP) cycle.

integrates four distinct software packages, each with its own
list of dependencies, the team frequently struggled with build
regressions in the early days of development. After a few
informal discussions with IDEAS-ECP members, the team
agreed that it would be necessary to (1) improve their end-to-
end build system, (2) implement a CI pipeline to automatically
detect build regressions, and (3) add unit/regression testing to
the CI pipeline.

Although the team had not committed to an explicit project-
management process at the early stages of the collaboration,
the steps taken during these discussions correspond to the first
two steps of the PSIP cycle shown in Figure 1. In order to
prioritize their efforts, it was critical to clarify the current
project practices and specify both near and long-term goals.

For the initial stage of the implementation of an automated
end-to-end build system, the PSIP process was only used
implicitly for project planning and execution. For the two
remaining goals, however, PSIP was followed explicitly using
the PTCs shown in Figure 2 (in summarized form). During
steps 3-4 of the PSIP cycle, these PTCs were both fully
annotated, but reflected a “score” of zero. For step 5 of the
PSIP cycle, each PTC step was resolved in both Jira and
GitLab as distinct stories and issues, respectively. The actual
implementation of these Jira/GitLab issues corresponded to
step 6 of the PSIP cycle, and the following assessment of the
completed work was the final step.

The completion of these cards does not mean that the
EXAALT team is finished improving their CI and/or testing
infrastructure. Like most aspects of software engineering, PSIP
is an iterative process, and the initial plan may need to change
if unexpected roadblocks emerge. Whether or not a progress
tracking card can be followed to completion, documenting,
revising, and repeating the process, makes sense when a

natural finishing point is reached. The PTC used in this effort
(see Figure 2) is available in the PSIP PTC catalog.

At this stage, the EXAALT team members have successfully
adopted a minimal CI framework and are ready to apply the
PSIP process to improve their CI pipeline further. The current
plan is to modify the existing infrastructure to interface with
ECP-supported facilities (e.g., Argonne Leadership Computing
Facility and Oak Ridge Leadership Computing Facility). In
addition, they are applying the PSIP process to further improve
test coverage, specifically in the area of statistical tests for
non-deterministic components and task management.

B. Exascale MPI

The Exascale MPI (Message Passing Interface) project
consists of team members from Argonne National Laboratory.
The project focuses on developing a production-ready, high-
performance MPI implementation that scales to the largest
supercomputers in the world. One particular challenge for
the Exascale MPI project is a continuous influx of new
contributors within the project. These new contributors are
expected to already have technical expertise with MPI or
learn these skills on-the-fly as needed by the job. While the
team does provide some mentoring to new members, limited
resources require that newcomers be fairly independent and
proactive when it comes to learning the basic technical aspects
of MPI.

The Exascale MPI team worked with a facilitator to im-
plement the PSIP process. Through the documentation of
current practices, the need to improve the project’s onboarding
processes was identified. Both the Exascale MPI team and the
facilitator agreed to work on a PSIP cycle focused around
improving the training for team contributors. This would take
the form of a single destination resource containing all the



Fig. 2: Summarized versions of PSIP PTCs used for the
EXAALT-IDEAS collaboration. The specific scores in the
figure correspond to the state of the project. Note that some
details about dependencies and timeline are excluded from the
PSIP cards for clarity.

required training material that could be provided to new team
members during the onboarding process.

Once the overall goal was identified, the Exascale MPI
team, together with the facilitator, identified key aspects of
a satisfactory solution. These aspects included the need for:

• A central “repository” for all training material, relevant
to the Exascale MPI team.

• Visually interesting, and easy navigation across all topics.
• Easy administration and ability to update the “repository”

sustainably.
• Open collaboration to allow external contributors to con-

tribute new technical topics and resources.

With the overall goal and desired outcome defined, the
Exascale MPI team worked with the facilitator to create a
timeline based on the resources available, followed by the
creation of a PTC. Figure 3 shows a snapshot of the PTC
created for this PSIP activity. Each step in the PTC, in this
case, serves as an important checklist step to move towards the

desired goal. As mentioned, these PTC cards are live entities
and they may change depending on unexpected progress or
bottlenecks.

Fig. 3: Progress Tracking Card snapshot for Exascale MPI
team, including date of completion. Row 0 indicates the team’s
status at the beginning of implementing the PSIP process.

Once the PTC was created, the team focused on the exe-
cution aspect of the PTC. The PSIP process aims to engage
a full team through the execution of PTC steps. Each step
is approachable, yet builds towards a larger goal. Throughout
the PSIP process, the Exascale MPI team, with help from the
facilitator, continually evaluated their progress on the path to
building a resource for improving onboarding and training.

For improving the training process, the teams identified
what categories of topics needed to be covered in the on-
boarding training. For each category, the team worked and
solicited resources (based on the potential expertise level of
new onboarding members), reviewed the material for accuracy
and applicability, and worked on the design to integrate them
into the training website/portal6. The Exascale MPI team, with
help from the facilitator, did explore the viability of using
existing cloud repository services (e.g., Google Drive). In the
end, the team decided to design a custom stand-alone website
to serve as a training portal, based on their needs and input
from the team members. The training-base portal is a continual
work-in-progress by the Exascale MPI team and can be a
resource for the entire HPC community. At this stage, the
Exascale MPI team is testing the training portal with their new
hires and soliciting feedback. The next step for this PSIP is to
create a plan to improve the training portal, which will focus
on adding new content categories and establishing processes
to sustain the content and its validity.

V. DISCUSSION AND FUTURE WORK

With the Exascale MPI PSIP process, we learned that PSIP
topic developed for a particular team may sometimes be
generalizable enough to be relevant and important to several
teams in an organization or across multiple organizations.

6Exascale Onboarding training portal: https://sites.google.com/view/hpc-
training-base/home



The topic of technical onboarding training for new hires may
sometimes be team-specific, however most teams working in
the HPC field need to train people in the common practices
of the community. Thus, a PTC created for one team (as in
the case of the Exascale MPI team) can be used by many
other teams as a starting point. We also realized that not only
the PTC, but also the resulting output (as in the case of the
training portal) could end up being immensely useful across
many other teams as well. The PTC used in this effort (see
Figure 3) is available in the PSIP PTC catalog.

For EXAALT, we learned that one significant advantage
of the PSIP management approach is that it forces the team
to specify the 4-6 steps needed to reach a given goal. In this
case, the process helped formulate the actionable items needed
to lay the foundation for CI within the existing EXAALT
software repository. Although PSIP can be used to manage the
goals of any software project, the specific details of each step
are highly dependent on the project. For example, different
projects will most likely need to work with slightly different
technologies to build a practical CI pipeline. Specific details
will depend on where and how the source code repository is
organized, as well as the limitations/capabilities of the existing
library dependencies. For EXAALT, this process required
careful discussion between teams in order to determine the
key technologies to use.

In summary, PSIP is a lightweight adaptable framework for
iterative and incremental improvement, applicable to any CSE
software project, regardless of how software is developed and
used. PSIP is easy to learn, especially for scientists who cannot
dedicate time and resources to more formal or heavyweight
approaches.

PSIP is meant to provide a mechanism to set goals collab-
oratively, get team buy-in, and enable periodic status checks
to ensure the goals and execution are aligned. In some cases,
teams may want to utilize a facilitator. This person may aug-
ment the PSIP by bringing process experience and objectivity
to the effort, coaching the team on improving effectiveness
and efficiency.

PSIP does have limitations. It is not as quantitative as other
tools (not designed that way) and will possibly seem trivial to
professional software engineering teams. It is presently best
applied in research software settings and untested in large
enterprises with product deliverables. Finally, no empirical
research on PSIP available currently, only a few case studies.

Presently, PSIP improvements will likely come from further
experience using it. We already know that one of the chal-
lenges of PSIP is making sure that progress on the topic of a
PTC is not blocked by some prerequisite impediment that must
be addressed first. Other needs include more documentation
to support conducting PSIP without a facilitator to improve
scalable application of PSIP. We also need to grow our PTC
catalog and conduct more research on the use of PSIP with
open source software teams, and large enterprises. Finally,
PSIP does not address the issue of teams not being rewarded
for efforts to improve developer productivity and software sus-
tainability. In order for PSIP to be broadly effective, the CSE

community must prioritize the value of these improvements,
something that we observe is happening slowly.

VI. CONCLUSION

In this work we introduced PSIP, a lightweight, iterative
SPI framework and method. Drawing upon a well-supported
foundation of software improvement theory and practice, PSIP
was developed to help CSE software teams, and specifically
HPC teams achieve software process maturity, an answer
to the call by the National Strategic Computing Initiative
for “a portfolio of new approaches to dramatically increase
productivity in the development and use of parallel HPC
applications” [19]. We provided two case studies where the
PSIP cycle was implemented by an existing scientific software
development teams with the help of a facilitator. Beyond
scientific computing, we hope that our study of SPI methods
and their use outside of conventional software development
environments will inform and drive further innovation in the
domain of software processes and methodologies.

VII. ACKNOWLEDGEMENTS

Special thanks to Lois McInnes (ANL) and the members of
IDEAS-ECP. Thanks to PSIP partners Danny Perez (LANL),
Art Voter (LANL), Christoph Junhans (LANL), and Pavan
Balaji (ANL). Images used by permission.

This work was supported by the U.S. Department of Energy
Office of Science, Office of Advanced Scientific Computing
Research (ASCR), Office of Biological and Environmental
Research (BER), and by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of
Energy Office of Science and the National Nuclear Security
Administration.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Hon-
eywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-
NA0003525. SAND2019-9693 C.

This manuscript has been authored by UT-Battelle, LLC, un-
der contract DE-AC05-00OR22725 with the US Department of
Energy (DOE). The US government retains and the publisher,
by accepting the article for publication, acknowledges that the
US government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for US government
purposes. DOE will provide public access to these results
of federally sponsored research in accordance with the DOE
Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

REFERENCES

[1] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, “Capability
maturity model, version 1.1,” IEEE software, vol. 10, no. 4, pp. 18–27,
1993.



[2] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI guidlines for process
integration and product improvement. Addison-Wesley Longman
Publishing Co., Inc., 2003.

[3] K. E. Emam, W. Melo, and J.-N. Drouin, SPICE: The theory and
practice of software process improvement and capability determination.
IEEE Computer Society Press, 1997.

[4] M. Kuhrmann, P. Diebold, and J. Münch, “Software process improve-
ment: a systematic mapping study on the state of the art,” PeerJ
Computer Science, vol. 2, p. e62, 2016.

[5] J. Klünder, R. Hebig, P. Tell, M. Kuhrmann, J. Nakatumba-Nabende,
R. Heldal, S. Krusche, M. Fazal-Baqaie, M. Felderer, M. F. G. Bocco
et al., “Catching up with method and process practice: An industry-
informed baseline for researchers,” in Proceedings of the 41st Interna-
tional Conference on Software Engineering: Software Engineering in
Practice. IEEE Press, 2019, pp. 255–264.

[6] P. Tell, J. Klünder, S. Küpper, D. Raffo, S. G. MacDonell, J. Münch,
D. Pfahl, O. Linssen, and M. Kuhrmann, “What are hybrid development
methods made of?: an evidence-based characterization,” in Proceedings
of the International Conference on Software and System Processes.
IEEE Press, 2019, pp. 105–114.

[7] W. E. Deming, Elementary principles of the statistical control of quality:
a series of lectures. Nippon Kegaku Gijutsu Remmei, 1950.

[8] Z. Stojanov, “Inductive approaches in software process assessment,” in
International Conference on Applied Internet and Information Technolo-
gies, 2016.

[9] V. R. Basili and G. Caldiera, “Improve soft-ware quality by reusing
knowledge and experience,” Sloan management review, vol. 37, pp. 55–
55, 1995.

[10] L. Briand, K. El Emam, and W. L. Melo, “Ansi–an inductive method for
software process improvement: Concrete steps and guidelines,” 1995.

[11] Z. Stojanov and D. Dobrilovic, “Learning in software process assess-

ment based on feedback sessions outputs,” Information Technology and
Development of Education (ITRO) 2015, p. 259, 2015.

[12] F. Pettersson, M. Ivarsson, T. Gorschek, and P. Öhman, “A practitioner’s
guide to light weight software process assessment and improvement
planning,” Journal of Systems and Software, vol. 81, no. 6, pp. 972–
995, 2008.

[13] E. S. Mesh, “Supporting scientific se process improvement,” in Pro-
ceedings of the 37th International Conference on Software Engineering-
Volume 2. IEEE Press, 2015, pp. 923–926.

[14] S. M. Baxter, S. W. Day, J. S. Fetrow, and S. J. Reisinger, “Scientific
software development is not an oxymoron,” PLoS Computational Biol-
ogy, vol. 2, no. 9, p. e87, 2006.

[15] N. U. Eisty, G. K. Thiruvathukal, and J. C. Carver, “Use of software
process in research software development: A survey,” in Proceedings of
the Evaluation and Assessment on Software Engineering. ACM, 2019,
pp. 276–282.

[16] G. Pinto, I. Wiese, and L. F. Dias, “How do scientists develop scientific
software? an external replication,” in 25th International Conference
on Software Analysis, Evolution and Reengineering, SANER 2018,
Campobasso, Italy, March 20-23, 2018, 2018, pp. 582–591.

[17] M. Heroux, L. McInnes, D. Bernholdt, T. Gamblin, O. Marques,
D. Moulton, B. Norris, E. Raybourn, and et al., “Developer productivity
and software sustainability report: Advancing scientific productivity
through better scientific software,” September 2018.

[18] E. M. Raybourn, J. D. Moulton, and A. Hungerford, “Scaling pro-
ductivity and innovation on the path to exascale with a “team of
teams” approach,” in International Conference on Human-Computer
Interaction. Springer, 2019, pp. 408–421.

[19] J. P. Holdren and S. Donovan, “National strategic computing initiative
strategic plan,” National Strategic Computing Initiative
Executive Council, Tech. Rep., 2016.


	Introduction
	Background
	Methodology
	Case Studies
	EXAALT
	Exascale MPI

	Discussion and Future Work
	Conclusion
	Acknowledgements
	References

