
Photos placed in horizontal position 
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Scalable	Parallel	Model	Checking	via	
Monte-Carlo	Tree	Search

Reed	Milewicz and	Simon	Poulding
October	2017



Mini-Introduction

§ Who	am	I?
§ Teaser

2



Who	am	I?

§ Postdoctoral	researcher	at	Sandia	National	
Laboratories

§ My	areas	of	interest
§ Software	Engineering
§ Formal	Verification
§ Static	and	Dynamic	Analysis
§ Source-to-Source	Transformation	Systems

3



The	Presentation	on	One	Slide

4

(1) Directed model 
checking is a powerful 

strategy for finding bugs in 
applications of interest.

(2) Parallelizing any graph 
algorithm is hard, especially 

for things like DMC.

concurrent, the state is additionally characterised by which
thread is currently active. One of the particular advantages
of model checking as a verification technique for concurrent
software is that it can consider all possible interleaving of
threads in contrast to dynamic testing during which there
may be no method to control thread interleavings.

Model checking can be used to verify that desirable prop-
erties hold for every state of the software; for example, the
absence of deadlocks and race conditions in concurrent soft-
ware. However the number of states in the model may be so
large that such an exhaustive check of each state is infeasi-
ble. Instead the approach taken may instead be to e�ciently
locate counterexamples: states at which the desirable prop-
erty is violated.

2.2 Heuristic Search
One approach for finding counterexamples e�ciently, i.e.

by visiting as few states as possible, is to use a suitable
heuristic to guide the exploration of states in the model [7].
A heuristic in this context is a function that maps a state to
a numeric value that quantifies how close a state is to vio-
lating the desired property and so being a counterexample.
This has obvious similarities to the fitness function used in
metaheuristic techniques and, indeed, in this paper, we in-
terpret the exploration of a model for counterexamples as
sharing many characteristics with metaheuristic search on a
fitness landscape.

Best-first search is an example of heuristic search. Start-
ing from a root state, each of the state’s children is consid-
ered and the heuristic calculated for each. These child states
are added to a queue. The state with the best heuristic value
is then retrieved from the queue and similarly explored: each
of its child states are considered and the heuristic is calcu-
lated. The search proceeds in this manner until a counterex-
ample is found or no more states can be reached.

2.3 Nested Monte-Carlo Search
Monte-Carlo Tree Search (MCTS) methods are machine

learning algorithms that derive a path through a tree, where
each node represents a decision to be made. They have
demonstrated significant success in the domain of automated
game playing, and in this context, the tree is a game tree
in which nodes represent game states, and the decision to
be made is which action to take at each turn in order to
improve the computer’s ability to win the game. Browne
et al. provide a detailed survey of the current state-of-the-
art in MCTS and, in particular, the application of these
methods to game playing [2].

The key feature of MCTS methods are that at each node
in the tree, the possible decisions are assessed by making
a small number of random simulations of future game play
from the current state to a state at which the game ends.
The premise is that although a small sample of random sim-
ulation will provide a noisy signal as to which move to take,
there is nonetheless su�cient signal that over a series of
moves the computer’s game play is e↵ective, and the use
of a small set of simulations is much more e�cient than an
exhaustive exploration of the game tree.

In this work we propose the use of Nested Monte-Carlo
Search (NMCS), a variant of MCTS described by Cazenave
for the purpose of playing single-player games [3]. To de-
cide which move to take at the current game state, NMCS
makes one simulation for each of the possible moves. The

A B C
current game state

ra
nd

om
 s

im
ul

at
io

n

Figure 1: NMCS applied to a game tree

simulation starts by making that move and then proceeds by
random moves until the simulated game comes to an end, at
which point the end state is assessed by a reward function.
The simulation that returns the best reward determines the
move that is taken, or, if no simulation is better than the
simulation that led to the current game state, the move is
determined by that earlier simulation.

Figure 1 illustrates the algorithm for a game state with
three possible moves, A, B, and C. A random simulation
(represented by the black arrows) is run from each of the
moves until an end state (indicated by a filled node) is
reached where no further moves are possible. The reward
function is measured at the end states, and whichever of A,
B, and C leads to the end state with the best reward (say,
C) is the move that is taken. The algorithm is then applied
again at the new node reached when the move C is taken.

Instead of random simulation, the algorithm may instead
use NMCS itself to determine the moves to make during
simulation. This is the nested aspect of the algorithm, and
a parameter—the nesting level taking integer settings of 1
or greater—controls the degree of nesting.

3. PROPOSED ALGORITHM
Our proposal is to apply a form of NMCS as heuristic

search method in model checking. Our hypothesis is that
we may realise, for model checking, the same e�cacy and
e�ciency of Monte-Carlo Tree Search methods that is ex-
hibited in the context of automated game play.

The transfer of NMCS to the domain of model checking
is, for the most part, straightforward: states in the model
are equivalent to states in the game tree, and the model-
checking heuristic function is equivalent to the game-playing
reward function. However, a complication arises with the
stopping criterion for the simulations. In game playing, the
simulation continues until no further moves are possible (one
of the players has won, or a stalemate has been reached). In
model checking, following a path of model states until an
end node is reached may not be practical. Not only can the
model be extremely large, but is often a graph rather than
a tree: many cycles in the graph may require an extremely
long path if an end state is to be reached.

For this reason, we introduce a new parameter to the form
of NMCS used in this work: the simulation depth. This pa-
rameter limits the length of the path that is followed during
a simulation. The heuristic is measured at the state when
this limit is reached (or at an end state if one is reached
before the limit). Figure 2 describes the proposed NMCS
algorithm using pseudo-code.

1360

(3) Monte Carlo Tree Search 
is an efficient technique for 

navigating large state 
spaces.

(3) We present an 
adaptation of parallel MCTS 

for DMC.

(4) We share experimental 
results, and outline a path 

for future work.



Overview

§ Background;	Research	Questions
§ Design;	Optimizations
§ Implementation
§ Experimental	Results
§ Future	Work

5



Background

6



Background:	Parallel	Search

§ In	general,	writing	good	parallel	graph	search	algorithms	is	
hard.	Ideally,	you	want...
§ Data	reuse	for	spatial/temporal	locality
§ Cache-friendly
§ Limited	communication

§ As	we	move	towards	exascale…
§ Data	movement	will	be	more	expensive	relative	to	processing.
§ Memory	per	processor	is	actually	expected	to	decrease.

7

In the coming years we can expect systems 
with very large memory sizes, and increasing 
numbers of CPU cores, but with each core 
running at a relatively low speed. 
– Holzmann, Joshi, Groce 2008 (Swarm Verification)



Background:	Parallel	Search

§ Research	on	parallel	model	checking	in	the	2000s	found	that	
communication	overhead	would	be	a	persistent	problem[1,2].

§ Ideally,	we	would	like	to	limit	redundant	computation	of	
states	so	as	to	maximize	the	amount	of	useful	parallel	work.	

8

[1] Holzmann and Bosnacki 2007
[2] Stern and Dill 2001

Naïve solution: a globally 
synchronized set of ‘seen’ 
states.



Background:	Parallel	Search

§ Many	works	have	followed	that	have	introduced	non-
communicating	or	minimally	communicating	parallel	search	in	
this	domain. 9

H0

…

Search0

H1 Search1

HN SearchN

H0

…Search0

Partitioning 
Function

SearchN

Search0

H0

…Search0 SearchN

Static partitioning
(Staats and Păsăreanu 2010)

Dynamic, on-the-fly partitioning
(Funes, Siddiqui, and Kurshid 2012)

Many independent searches
(Dwyer et al. 2007,

Holzmann, Joshi, and Groce 2008)

Task competition
(Nguyen et al. at ASE 2017!)

VariantsPgrm
Search0

…

SearchN



Background:	MCTS

§ Monte-Carlo	Tree	Search	(MCTS)	algorithms	are	very	popular	
within	the	game-playing	AI	community,	most	recently	
enabling	the	triumph	of	AlphaGo over	world-class	Go	player	
Lee	Sedol in	2016,	a	major	milestone	in	the	history	of	AI.
§ Anytime	algorithm
§ Effectiveness	of	Monte	Carlo	random	sampling	is	well-established.
§ Can	be	combined	with	[(meta-)*|(hyper-)*]heuristic	search.
§ Memory	efficient	and	readily	parallelizable.

10

concurrent, the state is additionally characterised by which
thread is currently active. One of the particular advantages
of model checking as a verification technique for concurrent
software is that it can consider all possible interleaving of
threads in contrast to dynamic testing during which there
may be no method to control thread interleavings.

Model checking can be used to verify that desirable prop-
erties hold for every state of the software; for example, the
absence of deadlocks and race conditions in concurrent soft-
ware. However the number of states in the model may be so
large that such an exhaustive check of each state is infeasi-
ble. Instead the approach taken may instead be to e�ciently
locate counterexamples: states at which the desirable prop-
erty is violated.

2.2 Heuristic Search
One approach for finding counterexamples e�ciently, i.e.

by visiting as few states as possible, is to use a suitable
heuristic to guide the exploration of states in the model [7].
A heuristic in this context is a function that maps a state to
a numeric value that quantifies how close a state is to vio-
lating the desired property and so being a counterexample.
This has obvious similarities to the fitness function used in
metaheuristic techniques and, indeed, in this paper, we in-
terpret the exploration of a model for counterexamples as
sharing many characteristics with metaheuristic search on a
fitness landscape.

Best-first search is an example of heuristic search. Start-
ing from a root state, each of the state’s children is consid-
ered and the heuristic calculated for each. These child states
are added to a queue. The state with the best heuristic value
is then retrieved from the queue and similarly explored: each
of its child states are considered and the heuristic is calcu-
lated. The search proceeds in this manner until a counterex-
ample is found or no more states can be reached.

2.3 Nested Monte-Carlo Search
Monte-Carlo Tree Search (MCTS) methods are machine

learning algorithms that derive a path through a tree, where
each node represents a decision to be made. They have
demonstrated significant success in the domain of automated
game playing, and in this context, the tree is a game tree
in which nodes represent game states, and the decision to
be made is which action to take at each turn in order to
improve the computer’s ability to win the game. Browne
et al. provide a detailed survey of the current state-of-the-
art in MCTS and, in particular, the application of these
methods to game playing [2].

The key feature of MCTS methods are that at each node
in the tree, the possible decisions are assessed by making
a small number of random simulations of future game play
from the current state to a state at which the game ends.
The premise is that although a small sample of random sim-
ulation will provide a noisy signal as to which move to take,
there is nonetheless su�cient signal that over a series of
moves the computer’s game play is e↵ective, and the use
of a small set of simulations is much more e�cient than an
exhaustive exploration of the game tree.

In this work we propose the use of Nested Monte-Carlo
Search (NMCS), a variant of MCTS described by Cazenave
for the purpose of playing single-player games [3]. To de-
cide which move to take at the current game state, NMCS
makes one simulation for each of the possible moves. The

A B C
current game state

ra
nd

om
 s

im
ul

at
io

n

Figure 1: NMCS applied to a game tree

simulation starts by making that move and then proceeds by
random moves until the simulated game comes to an end, at
which point the end state is assessed by a reward function.
The simulation that returns the best reward determines the
move that is taken, or, if no simulation is better than the
simulation that led to the current game state, the move is
determined by that earlier simulation.

Figure 1 illustrates the algorithm for a game state with
three possible moves, A, B, and C. A random simulation
(represented by the black arrows) is run from each of the
moves until an end state (indicated by a filled node) is
reached where no further moves are possible. The reward
function is measured at the end states, and whichever of A,
B, and C leads to the end state with the best reward (say,
C) is the move that is taken. The algorithm is then applied
again at the new node reached when the move C is taken.

Instead of random simulation, the algorithm may instead
use NMCS itself to determine the moves to make during
simulation. This is the nested aspect of the algorithm, and
a parameter—the nesting level taking integer settings of 1
or greater—controls the degree of nesting.

3. PROPOSED ALGORITHM
Our proposal is to apply a form of NMCS as heuristic

search method in model checking. Our hypothesis is that
we may realise, for model checking, the same e�cacy and
e�ciency of Monte-Carlo Tree Search methods that is ex-
hibited in the context of automated game play.

The transfer of NMCS to the domain of model checking
is, for the most part, straightforward: states in the model
are equivalent to states in the game tree, and the model-
checking heuristic function is equivalent to the game-playing
reward function. However, a complication arises with the
stopping criterion for the simulations. In game playing, the
simulation continues until no further moves are possible (one
of the players has won, or a stalemate has been reached). In
model checking, following a path of model states until an
end node is reached may not be practical. Not only can the
model be extremely large, but is often a graph rather than
a tree: many cycles in the graph may require an extremely
long path if an end state is to be reached.

For this reason, we introduce a new parameter to the form
of NMCS used in this work: the simulation depth. This pa-
rameter limits the length of the path that is followed during
a simulation. The heuristic is measured at the state when
this limit is reached (or at an end state if one is reached
before the limit). Figure 2 describes the proposed NMCS
algorithm using pseudo-code.

1360



Prior	Work

§ Poulding and	Feldt 2015	applied	a	variant	of	MCTS,	Nested	
Monte	Carlo	Search,	to	the	problem	of	directed	model	
checking.
§ The	implementation	wasn’t	very	efficient.
§ The	paper	itself	was	written	in	48	hours.
§ The	authors	only	considered	the	serial	case.
§ But	the	results	were	very	promising!

§ In	this	work,	we	present…
§ A	minimally	communicating	parallel	MCTS	search	strategy.
§ Experimental	results	which	demonstrate	the	effectiveness	of	our	

approach.	

11



Design	and	Implementation

12



Local	Search	ala	MCTS

13

Master 
is here

S
E
A
R
C
H

L
I
M
I
T

H(s) = 5

H(s) = 17



Nesting	MCTS

§ MCTS	can	be	recursively	nested.
§ Note:	The	workers	can	cache	the	states	that	they	have	

explored,	but	it	is	not	strictly	necessary.	The	master	is	not	
responsible	for	retaining	these	states. 14

Nesting Level 0 Nesting Level 2



NMCS	Optimizations

§ In	the	domain	of	conventional	games…
§ Computation	of	an	individual	state	tends	to	be	cheap.
§ Depth	and	branching	factor	are	well-known	in	advance.

15

O(ℎ$%&𝑏$)
Where

𝑁 is the nesting factor
ℎ is the depth of the tree
𝑏 is the branching factor



NMCS	Optimizations

§ The	search	space	can	be	very deep,	and	the	computational	
cost	of	a	state	can	be	very high,	which	means	that	we	can	end	
up	waiting	for	a	long	time	on	a	worker	to	complete	a	
simulation.	We	add	a	limit	parameter	here. 16

O ℎ$%&𝑏$ → O 𝑙(ℎ)$%&𝑏$



NMCS	Optimizations

§ The	branching	factor	can	grow	to	be	extremely	large.	This	
means	that	each	worker	gets	saddled	with	a	backlog	of	
simulations	to	perform.	We	also	add	a	limit	parameter	here.

17

! ! ! !

O 𝑙(ℎ)$%&𝑏$ → O 𝑙 ℎ $%&𝑙(𝑏)$



NMCS	Optimizations
§ In	conventional	NMCS,	a	simulation	reports	

the	heuristic	value	of	the	last	state	visited.
§ In	our	implementation,	we	report	the	best	

value	across	all	states	visited.

18

Anonymous Review 
#1

[…] That is a GREAT 
idea and on that alone 
I would accept this 
paper.

Simulation Depth

Heuristic Priority 
(lower is better)

s0

s1
The state s0 had the
best heuristic value. 
The state does not 
contain a violation, 
but could be in the 
neighborhood of a 
violation.



Implementation

19

C

0

1

2

3

4

5

6

7

p0 p1

h0 h1

p2 p3

h2 h3

p4 p5

h4 h5

p6 p7

h6 !!!



Evaluation

20



Evaluation

§ Benchmark:	Dining	Philosophers	Problem	{50,	100,	200,	400	
threads},	average	of	10	runs,	time	limit	of	600	seconds

§ Platform:	Eight	20-core	Intel	Xeon	E5-2698	v4	nodes	each	
with	32	GB	of	available	RAM	

21
[1] Groce and Visser 2002
[2] Staunton and Clark 2010

“Kitchen Sink” Serial 
Optimization

• EDA(ℎ,-./01-2345)[2]

• ACO(EDA)[3]

• MGA(ACO)

Parallel NMCS

• NMCS(ℎ,-./01-2345)
• 1 master, 4 workers
• Nesting limit: {1}
• Depth limit: {4,8,16}
• Choice limit: {4,8,16} 

Serial Baseline

ℎ,-./01-2345 = 𝑁71894 −
𝑁;<==7014 [1]

[3] Chicano and Alba 2008



Evaluation:	Results

22

§ In	terms	of	the	
number	of	states	
explored	(or,	
alternatively,	memory	
consumption),	NMCS	
offers	competitive	
performance	while	
being	prior-free.

§ Counterexample	
lengths	are	identical	
(+/- 1)	to	baseline.



Evaluation:	Results

§ With	4	workers,	parallel	NMCS	is	22.84x,	22.53x,	16.55x,	and	
5x	faster	than	the	serial	NMCS.

§ Parallel	NMCS	is	3-4x	slower	than	the	serial	baseline.	This	is	
an	embarrassingly	parallel	task,	so	we	can	go	even	lower,	but	
turnaround	time	will	still	be	limited	by	communication	
overhead.	

23



Where	do	we	go	from	here?

24

(1) Smarter caching policies for 
workers can enable better reuse, 

faster turnaround time.

(2) Search partitioning schemes 
can be used to enable multiple 

master instances.

(3) Master/Worker computation 
can be interleaved to maximize 

throughput.

(4) Scalability tests against real-
world applications of interest will 
reveal optimization opportunities 

within JPF. 



In	Memoriam

25

Dr. Simon Poulding
October 1967 – August 2017



Questions?

26


