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Mini-Introduction )

= Who am I?

= Teaser




Who am |? ) g

= Postdoctoral researcher at Sandia National
Laboratories

= My areas of interest

= Software Engineering

" Formal Verification
= Static and Dynamic Analysis
= Source-to-Source Transformation Systems
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The Presentation on One Slide ) &=,
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random simulation

(1) Directed model .

checking is a powerful (2) Parallelizing any graph  (3) Monte Carlo Tree Search

strategy for finding bugs in algonthm.ls hard, especially s an efficient technique for
applications of interest. for things like DMC. navigating large state

spaces.
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(3) We present an (4) We share experimental
adaptation of parallel MCTS results, and outline a path
for DMC. for future work.
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Overview )

= Background; Research Questions
= Design; Optimizations
" Implementation

= Experimental Results
= Future Work
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Background: Parallel Search ) .

= |n general, writing good parallel graph search algorithms is
hard. Ideally, you want...
= Data reuse for spatial/temporallocality
= Cache-friendly
= Limited communication

= As we move towards exascale...

= Data movement will be more expensive relative to processing.
= Memory per processoris actually expected to decrease.

/{he coming years we can expect systems
with very large memory sizes, and increasing
numbers of CPU cores, but with each core
running at a relatively low speed.

— Holzmann, Joshi, Groce 2008 (Swarm Verification)




Background: Parallel Search ) .

= Research on parallel model checking in the 2000s found that
communication overhead would be a persistent problem!%.2,

= |deally, we would like to limit redundant computation of
states so as to maximize the amount of useful parallel work.

Naive solution: a globally
synchronized set of ‘seen’

states.

[1] Holzmann and Bosnacki 2007
[2] Stern and Dill 2001
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Background: Parallel Search h) ..
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Many independent searches
(Dwyer et al. 2007,
Holzmann, Joshi, and Groce 2008)

Search; Ty
[ Partitioning ] Searchg
Function /\
Searchy Searchy Searchy Searchg | --- | Searchy
Static partitioning Dynamic, on-the-fly partitioning

T\
Pgrm

(Staats and Pasareanu 2010) (Funes, Siddiqui, and Kurshid 2012)

Searchg

Searchy

Task competition
(Nguyen et al. at ASE 2017!)

= Many works have followed that have introduced non-

communicating or minimally communicating parallel search in
this domain.




Background: MCTS ) B,

= Monte-Carlo Tree Search (MCTS) algorithms are very popular
within the game-playing Al community, most recently
enabling the triumph of AlphaGo over world-class Go player
Lee Sedol in 2016, a major milestone in the history of Al.
= Anytimealgorithm
= Effectiveness of Monte Carlo random samplingis well-established.
= Canbe combined with [(meta-)*|(hyper-)*]heuristicsearch.

= Memory efficient and readily parallelizable. Currentgameia}?\‘
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Prior Work )

= Pouldingand Feldt 2015 applied a variant of MCTS, Nested
Monte Carlo Search, to the problem of directed model
checking.
= The implementation wasn’t very efficient.
= The paperitselfwas writtenin 48 hours.
= The authorsonlyconsidered the serial case.
= Buttheresults were very promising!

= |n this work, we present...

= A minimallycommunicating parallel MCTS search strategy.

= Experimental results which demonstrate the effectiveness of our
approach.
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Design and Implementation




Local Search ala MICTS )

Master
is here




Nesting MCTS ) &,
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Nesting Level 0 Nesting Level 2

= MCTS can be recursively nested.

= Note: The workers can cache the states that they have
explored, butit is not strictly necessary. The master is not
responsible for retaining these states. 1
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NMCS Optimizations )

O(hN+1bN)

Where
N is the nesting factor
h is the depth of the tree
b is the branching factor

= |n the domain of conventional games...
= Computationofanindividualstate tendsto be cheap.
= Depth and branchingfactorare well-known in advance.
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NMCS Optimizations ) &

Laboratories

O(hN+1bN) N O(l(h)N+1bN)
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= The search space can be very deep, and the computational

cost of a state can be very high, which means that we can end
up waiting for a long time on a worker to complete a
simulation. We add a limit parameter here.
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NMCS Optimizations ) .

O(L(R)™*b™) - 0(L(M T HL(B)™)

0 O

= The branchingfactor can grow to be extremely large. This
means that each worker gets saddled with a backlog of
simulations to perform. We also add a limit parameter here.




NMCS Optimizations ) .

= |n conventional NMCS, a simulation reports _
Anonymous Review

the heuristic value of the last state visited. 4#1
" |n ourimplementation, we report the best [.] That is a GREAT
value across all states visited. idea and on that alone
| would accept this
paper.

The state sghad the
best heuristic value.
Heuristic Priority The state does not
(lower is better) contain a violation,
but could be in the
So neighborhood of a
violation.

Simulation Depth
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Implementation ) B,




Evaluation




Evaluation )

= Benchmark: Dining Philosophers Problem {50, 100, 200, 400
threads}, average of 10 runs, time limit of 600 seconds

= Platform:Eight 20-core Intel Xeon E5-2698 v4 nodes each
with 32 GB of available RAM

Serial Baseline “Kitchen Sink” Serial Parallel NMCS
Optimization

° NMCS(hmostblocked)

Rmostbiocked = Native — * EDA(hmostblocked)[z] * 1 master, 4 workers
Nrunnapie!! « ACO(EDA)R! - Nesting limit: {1}
« MGA(ACO) * Depth limit: {4,8,16}

« Choice limit: {4,8,16}

[1] Groce and Visser 2002 [3] Chicano and Alba 2008
[2] Staunton and Clark 2010 21




Evaluation: Results )

- = |nterms of the
Lo number of states
explored (or,
alternatively, memory
consumption), NMCS

Memory Consumption (in Gigabytes)

50 philosophers 100 philosophers 200 philosophers 400 philosophers

R SR offers competitive
,,,, performance while
B NMCS(master) e . .
% wmost-blocked e being prior-free.
-=:*ACO(EDAMMGA .
1% = - Optimal e = Counterexample

.
.
.
.
.
.
.
.
.
.
.
.

- [ I— ) lengths are identical
P e (+/- 1) to baseline.

Number of States Explored

Number of Philosophers 22




Evaluation: Results )

Relative Time Performance

W 600k — —

£ B Serial NMCS
8 500k [ Parallel NMCS
wv 0 Baseline
%AOOk
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o 300k

= B

= 200k
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§°100k I é

g 0 — e -

b

50 philosophers 100 philosophers 200 philosophers 400 philosophers

= With 4 workers, parallel NMCS is 22.84x, 22.53x, 16.55x, and
5x faster than the serial NMCS.

= Parallel NMCS is 3-4x slower than the serial baseline. This is
an embarrassingly parallel task, so we can go even lower, but
turnaround time will still be limited by communication .



Where do we go from here?

/N

(1) Smarter caching policies for (2) Search partitioning schemes
workers can enable better reuse, can be used to enable multiple
faster turnaround time. master instances.

¥ 100x
<} 1000x
N 10000x

(4) Scalability tests against real-

(3) Master/Worker computation world applications of interest will

can be interleaved to maximize reveal optimization opportunities
throughput. within JPF.
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In Memoriam ) e

Dr. Simon Poulding
October 1967 — August 2017




Questions?




