
Photos placed in horizontal position 
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Talk	to	Me:	A	Case	Study	on	Coordinating	
Expertise	in	Large-Scale	Scientific	Software	

Projects	
Reed	Milewicz and	Elaine	Raybourn

rmilewi@sandia.gov;	emraybo@sandia.gov
SAND2018-12054 C
Unclassified Unlimited Release

TUG’18	(25	Oct	2018);	WSSSPE	6.1	(29	Oct	2018)

Unclassified	 Unlimited	Release



Overview

§ TL;DR
§ Who	am	I?	
§ Defining	“Large-Scale”	in	Scientific	Software	Development
§ Motivating	Example:	The	Trilinos Project
§ Research	Questions
§ Methodology
§ Conclusions;	Future	Work

2

Unclassified	 Unlimited	Release



TL;DR

3

Large-scale collaborative scientific software projects require more 
knowledge than any one person typically possesses.

As researchers scale up these projects, they are beset by 
problems of communication and coordination. Many software-
related problems may, in large part, be organizational issues. 

We present a case study on the coordination of expertise in a 
scientific software project, how it relates to development 
challenges, and explore possible solutions.

Unclassified	 Unlimited	Release



Who	Am	I?
§ A	postdoc	working	within	the	Software	

Engineering	and	Research	Department	at	
the	Computer	Science	Research	Institute	at	
Sandia.

§ My	Areas	of	Interest:
§ Software	Engineering
§ Compilers
§ Formal	Verification

§ My	funding	comes	from	the	Interoperable	
Design	of	Extreme-scale	Application	
Software	(IDEAS)	project,	an	arm	of	the	
Exascale Computing	Project	(ECP).

4

Unclassified	 Unlimited	Release



Large-Scale	Scientific	Software	
Development
§ Scientific	software	projects,	such	as	those	developed	at	

Sandia,	are	among	the	most	complex,	knowledge-intensive	
undertakings	in	all	of	human	history.

§ When	is	software	“large-scale”?	The	hallmark	of	large-scale	
software	is	that	nobody	can	know	everything	(Moe	et	al.	
2014).

§ This	threshold	is	reached	far	faster	in	scientific	software	than	
in	most	conventional	software.

5

Unclassified	 Unlimited	Release



Large-Scale	Scientific	Software	
Development

6

Stakeholder Such as… In short…

Funding
Agencies; 
Supporting 
Institutions

We need X! 
(X is some unit of 
science).

Specialized 
Codes and 
Libraries

We provide 
foundational 
capabilities to solve 
X.

Engineering 
Physics 
Integrated Codes

We provide 
simulations for X.

End-users/
Analysts (and 
their codes)

We solve the 
problem and deliver 
X.

Unclassified	 Unlimited	Release



Large-Scale	Scientific	Software	
Development

7

Solve 
Ax = B

Simulate 
physics

Solve Ice 
Sheet 

Modeling

enables

enables enables

LandIce

Unclassified	 Unlimited	Release



Case	Study:	Trilinos

§ Trilinos is	a	confederation	of	(~60)	object-
oriented	software	packages	for	building	
scalable	scientific	and	engineering	
applications,	written	in	C++.

§ Provides	foundational	capabilities	for	
many	different	applications	both	inside	
and	outside	of	the	labs.

8

Multigrid solvers and 
preconditioners for 

sparse linear systems

Optimization algorithms 
for use in large-scale 

engineering applications

Examples 
Include…

Unclassified	 Unlimited	Release



Motivation

§ Problem:	A	critical	application	using	Trilinosfailed	a	major	
acceptance	test	to	an	unexpected	explosion	in	memory	usage	
when	running	with	more	than	217 MPI	progresses.

§ A	team	of	researchers	was	given	several	months	to	locate	the	
bug	to	no	avail,	but	the	issue	was	finally	resolved	when	one	
heroic	Trilinosscientist-developer	volunteered	three	weeks	of	
his	time	to	uncover	it.	

§ The	cause	of	the	bug?
§ A	misuse	of	an	MPI	function	due	to	a	misunderstanding	about	its	

semantics.
§ An	inefficient	vendor	implementation	of	that	MPI	function

9

Unclassified	 Unlimited	Release



Motivation

§ I	conducted	my	own	investigation	by	interviewing	different	
parties	and	analyzing	source	code	histories.

§ The	deeper	mystery:	The	exact	same	bug	had	been	fixed	
twice	before!

§ In	each	case,	the	discovery	and	solutions	were	socialized,	
notes	were	made,	etc.	However,	the	information	did	not	flow	
to	the	right	parties	in	each	subsequent	incident.	

10

Package 
A

(1) Bug introduced into 3 packages 
between 1998-2000, fixed in 2005.

Package 
B

Package 
C

Package 
D

Package 
E

(2) Copied line-for-
line into a 4th

package in 2004, 
fixed in 2015.

???

(3) Introduced 
(somehow) into the 

final package in 
2014, fixed in 2017.

Unclassified	 Unlimited	Release



Motivation

11

Knowledge: A fluid mix of framed experience, values, contextual information, and expert 
insights that provides a framework for evaluating and incorporating new experiences and 
information. It originates in and is applied in the minds of knowers. In organizations, it 
often becomes embedded not only in documents or repositories but also in organizational 
routines, processes, practices, and norms. 

Davenport and Prusak 1998

§ It	can	be	tacit	or	explicit.
§ It	can	be	socialized,	combined,	internalized,	or	externalized.
§ It	can	include	“knowing	what”,	“knowing	who”,	“knowing	

why”,	etc.
§ It	can	be	lost	or	unable	to	be	communicated.

Knows X Needs to know X

Unclassified	 Unlimited	Release



Research	Questions

§ RQ1:	Do	scientific	software	developers	face	challenges	in	
sharing	their	knowledge?	If	so,	what	are	the	challenges?

§ RQ2:	How	does	individual	and	organizational	knowledge	
affect	those	problems?

§ RQ3:	How	is	that	knowledge	communicated?

12

Unclassified	 Unlimited	Release



Conducting	the	Survey

§ Survey	data	was	collected	
over	a	period	of	3	months.

§ 36	developers	responded,	
covering	95%	of	the	
“main”	development	
group.

§ Survey	topics:
§ Background	and	

demographic	information
§ Career	priorities
§ What	and	who	people	know
§ How	they	communicate
§ What	problems	they	face

13

w]

w]

Unclassified	 Unlimited	Release



Demographics

§ 86%	of	respondents	have	completed	a	PhD.	The	median	
respondent	had	between	11	and	15	years	of	experience.

§ 73%	work	on	4	or	more	projects.	Most	people	work	regularly	
with	6	to	10	other	people.

14

Unclassified	 Unlimited	Release



The	19	Problems	(categories	and	
examples)
§ Code	Understanding	(4	problems)

§ Understanding	 code	that	someone	else	wrote	(83.3%	agree).
§ Task	Switching	(3	problems)

§ Having	to	divide	my	attention	between	many	different	 projects	(94.4%	agree).
§ Modularity (2	problems)

§ Understanding	 the	impact	of	changes	that	I	make	on	code	elsewhere	(61.1%	
agree).

§ Links	Between	Artifacts	(5	problems)
§ Finding	 code	related	to	a	bug	 (83.3%	agree).

§ Team (2	problems)
§ Convincing	developers	 to	make	changes	to	code	that	I	depend	 upon	 (61.1%	

agree).

§ Expertise	Problems	(3	problems)
§ Finding	 the	right	person	 to	talk	about	a	piece	of	code	(50.0%	agree).

15

Unclassified	 Unlimited	Release



What	We	Know	About
These	Problems
§ The	majority	of	respondents	reported	having	13	out	of	19	

problems.	The	median	respondent	reported	having	11	
problems,	2	of	which	were	considered	serious.

§ Problems	within	each	category	don’t	tend	to	correlate	well	
with	each	other	(as	measured	by	Cronbach’s	alpha).

§ The	data	suggests	that	these	problems	have	multiple	
independent,	latent	causes.	

16

Category Cronbach’s alpha
Code Understanding 0.770

Task Switching 0.715

Modularity 0.474

Artifacts 0.595

Team 0.594

Expertise Finding 0.579

Unclassified	 Unlimited	Release



Let’s	try	a	naïve	network	analysis

§ Triangle	counting:	For	each	vertex,	how	many	cycles	of	length	
three	can	we	find	that	include	that	vertex?

§ For	this,	we	examined	Github project	team	membership.

17

Unclassified	 Unlimited	Release



Team	Network	vs.	Problems

18

People	on	the	organizational	periphery	tend	to	report	more	
problems	than	people	closer	to	the	core.	But	why?	

Unclassified	 Unlimited	Release



Is	there	a	simple	explanation?

§ Is	this	a	matter	of	experience?	
§ No,	only	3/19	problems	can	be	correlated	with	experience.

§ Is	this	a	matter	of	the	number	of	people	that	respondents	
work	with	or	the	number	of	projects	they	work	on?
§ No,	people	don’t	tend	to	report	more	or	fewer	problems	based	on	the	

number	of	contacts	or	projects	they	have.	2/19	problems	can	be	
correlated	with	the	number	of	projects	people	have.	

§ This	is	not	surprising:	studies	of	R&D	organizations	have	often	
drawn	attention	to	the	value	of	network	centrality	in	
amplifying	an	individual’s	impact	and	increasing	their	access	
to	knowledge.

19

Unclassified	 Unlimited	Release



What/who	do	they	know?

§ We	used	a	five	factor	knowledge	model	of	scientific	software	
development	(Kelly	2015).	From	that,	we	created	a	list	of	
topics	and	had	respondents	rank	their	expertise	in	those	
areas.

§ For	each	topic,	we	also	asked	respondents	to	indicate	
whether	they	knew	someone	they	could	“turn	to	for	help”	for	
it. 20

Real-World

Execution

Operational Theory

Software

Solution

D. Kelly, “Scientific software development viewed as knowledge acquisition: Towards understanding the 
development of risk-averse scientific software,” Journal of Systems and Software, vol. 109, pp. 50–61, 2015. 

Unclassified	 Unlimited	Release



What/who	do	they	know?

21

The most useful forms of expertise are 
those that allow respondents to position 
themselves between domains of activity.

“Knowing who” is instrumental for 
maintaining awareness as well as 

negotiating and coordinating with others.

§ Operational	and	execution	domain	knowledge	are	moderately	
correlated	with	four	of	the	nineteen	problems.	

§ Real-world,	theory,	and	software	domain	knowledge	provided	
nomeasurable	benefit.	

§ Ten	of	the	nineteen	problems	are	influenced	by	seeking	help	
from	others.	

Unclassified	 Unlimited	Release



How	do	they	communicate?

3%

11%

11%

36%

36%

47%

28%

25%

8%

22%

50%

81%

81%

78%

83%

86%

64%

61%

42%

33%

33%

28%

25%

22%

19%

11%

11%

8%

6%

0%

11%

25%

28%

22%

31%

19%

44%

50%

69%

58%

39%

8%

11%

17%

17%

Documentation, code comments, or tutorials

Issue tracking and task management software

Team collaboration software

Social media

Personal instant messaging services

Videoconferencing software

SMS text messages

Conference phone calls

One-on-one phone calls

Public mailing lists

Private email exchanges

Large meetings with multiple teams or
stakeholders

Regular planned meetings

Impromptu meetings with multiple people

One-on-one conversations

100 50 0 50 100
Percentage

Response
Never or not in the last year

Less than once a month

Monthly

Weekly

Daily

22

• Knowledge scores appear to mirror 
communication scores; those who 
communicate more, know more.

• Face-to-face communications 
enable expertise-finding activities, 
affecting three of the nineteen 
problems. 

• Digital communication strategies 
are useful for protecting modularity 
and understanding the links 
between artifacts, but the 
communication overhead also 
introduces new challenges (e.g. 
divided attention).

Unclassified	 Unlimited	Release



How	do	they	communicate?

23

Face-to-face communication is important 
for collaborative problem solving. It’s more 
than just knowing who to talk to, it’s about 
cultivating close relationships with those 

people.

In fact, there was a recent study of an 
R&D organization that found a drop-off 
in collaboration frequency and success 

after about 100 feet of distance 
between offices (Kabo et al 2014) .

100 ft à ~20% 
loss in efficiency

F. W. Kabo, N. Cotton-Nessler, Y. Hwang, M. C. Levenstein, and J. Owen-Smith, “Proximity effects on the 
dynamics and outcomes of scientific collaborations,” Research Policy, vol. 43, no. 9, pp. 1469– 1485, 2014. 

Unclassified	 Unlimited	Release



So,	what	can	we	say	about	the	
19	problems?
§ They	are	not	cured	by	time	or	experience.
§ We	found	no	proof	to	suggest	that	additional	domain	or	

software	development	training	will	make	them	go	away.
§ However,	they	are,	in	some	sense,	a	function	of	a	person’s	

“embeddedness”	in	the	team.	More	specifically,	we	found	
several	factors	that	appear	to	influence	the	occurrence	of	
problems:
§ Knowing	what
§ Knowing	who
§ Communication	strategies

24

Unclassified	 Unlimited	Release



Recommendations

§ What	might	help?
§ Empowering	knowledge	brokers

§ 33%	of	our	 respondents	 knew	no	one	 they	could	 turn	to	for	help	in	any	of	
the	knowledge	areas	while	having	an	average	of	5	different	problems	 that	
could	potentially	be	mitigated	by	having	useful	contacts

§ Giving	 formal	recognition	 and	power	to	the	people	who	know	people
§ Cultivating	organizational	awareness

§ The	value	of	serendipitous	 encounters
§ Interdepartmental	 seminars	and	luncheons

§ Encouraging	integrative	work	(more	expensive)
§ 36%	of	respondents	 reported	having	no	daily	face-to-face	interactions	
with	other	coworkers

§ Occasional	(temporary)	 team	rotations
§ Pair	programming	 for	production	 code

25

Unclassified	 Unlimited	Release



Ongoing/Future	Work

26

Collected 27 hours of testimony from scientific software 
developers. Using this data to develop plans of action. Ongoing 
work between researchers at Sandia, Clemson, Para, and 
Pernamuco.

Working with researchers at Clemson University to study teams 
that use Trilinos and other libraries, targeting issues in code 
readability and usability.

Working with another researcher at LANL to develop better tools 
for performance modeling and analysis to aid decision support. 

Now that 1400 has an official software engineering R&D 
department, we’ve talked about putting research into action more 
quickly to support teams (e.g. tools/frameworks).

Unclassified	 Unlimited	Release



Questions?

27

Want to use our protocol in your own research? Here’s a link:

https://github.com/rmmilewi/KnowledgeManagementSurvey

Unclassified	 Unlimited	Release


