
exascaleproject.org ideas-productivity.org

Students@SC: Modern Software Design,
Tools, and Practices

Elsa Gonsiorowski
Lawrence Livermore
National Laboratory

gonsie@llnl.gov

Reed Milewicz
Sandia National

Laboratories
rmilewi@sandia.gov

18 November 2019 SAND2019-14171 PE

2

Why We Are Here

• We are part of the US
Exascale Computing Project
(ECP)
– Accelerating the delivery of next-

generation computing
ecosystems!

• Within the ECP, we are
members of the Interoperable
Design of Extreme-scale
Application Software (IDEAS)
team.
– Improving the productivity and

sustainability of ECP scientific
software projects through better
practices, processes, and tools!

3

Why We Are Here
• The future of science is equal parts

theoretical, empirical, and computational.
– Your career will involve creating, using, and

interpreting software.

• The typical research software developer
is a domain scientist or mathematician
with little (if any) formal training in
software development.
– “It’s crazy how much of my career has

become devoted to making and maintaining
software since I got here. I’ve had to learn a
lot on the job.”

• The Students@SC program gives people
like Elsa and me the opportunity to help
you realize your full potential.

Elsa

Reed

Practices

Tools
Design

Y’all

4

Plan for Today’s Lecture

Schedule
2:30 PM – 3:30 PM Reed’s Talk on Software Design

and Implementation
3:30 PM – 4:00 PM Break
4:00 PM – 5:00 PM Elsa’s Talk on Tools and Practices

The aim is to provide you with tools and a
mindset that you can apply to your own code.

exascaleproject.org ideas-productivity.org

How to Write Code You’re Not
Embarrassed to Share

Reed Milewicz
Sandia National Laboratories

rmilewi@sandia.gov

18 November 2019

6

Who Am I?

• I am a computer scientist who
specializes in software engineering
research.

• I try to model, understand, and
predict the factors that lead to high-
quality software systems.

• In turn, I aim to develop better
practices, processes, and tools that
drive those factors.

• Right now, much of my work targets the
research software community.

7

Defining Research Software

It can range from tiny,
personal scripts to multi-
million-line libraries.

Research software is
any software that
helps answer a
research question.

It can be a one-of code
for research paper, or a
project spanning many
years.

exascaleproject.org ideas-productivity.org

How to Write Code You’re Not
Embarrassed to Share

9

Why Should You Share Your Software?

Software is revolutionary for research. It’s an instrument
for producing insight that is infinitely copiable and
distributable, an engine for rapid innovation.

Sharing software likewise enables greater
reproducibility of results, which is fundamental to the
scientific method.

But here’s what I really want to get across: the software
you share is generally more useful to you than the
software you don’t.

10

Why Should You NOT Share Your Software?

“I’m afraid that there’s
a flaw in my code, and
people will discover it

if I release my
software!”

“My software is a
competitive advantage.
Other researchers might
beat me to a publication

using my code!”

“Releasing software
implies that you will

support that software.
I’m not ready for that
kind of commitment!”

11

Why Should You NOT Share Your Software?

“I’m afraid that there’s a flaw in
my code, and people will
discover it if I release my
software!”

Your peers aren’t half as judgmental as you
think.

Being paralyzed by fear that your code is
bad becomes a self-fulfilling prophecy.

12

Why Should You NOT Share Your Software?

This is often the first point in disguise.

This is reasoning is also self-sabotaging.
You only lose out on credit and influence.

“My software is a competitive
advantage. Other researchers
might beat me to a publication
using my code!”

13

Why Should You NOT Share Your Software?

That’s not… true.
Regardless, if the software were written in a
maintainable way, this wouldn’t be a big
concern.

“Releasing software implies
that you will support that
software. I’m not ready for that
kind of commitment!”

14

Why Should You NOT Share Your Software?

In my experience, underneath all these
claims are fear and uncertainty

regarding the quality of software.

15

Well, What Is “Quality” Anyway?

• Two kinds of quality:

• Most quality is internal, and – all things
being equal – that’s where most of the
fear is.

External

Internal

Correctness

Usability

Performance

Modularity
Portability

Maintainability
Reusability

Extensibility

Reliability

Functionality

UpgradabilityTestability

Composability

Functional quality: Can the software do
what it needs to (e.g. provide correct
results given the right resources)? In
other words, can it fulfill the functional
requirements?

Structural quality: Is it written well? Can
it fulfill the non-functional requirements?

16

How Do We Achieve Quality?

• At the time of this presentation, 50 years of
study and experience have gone into
answering that question.

• Software engineering is like medicine.
– We have cutting edge research developing

innovative therapies (better languages, tools,
methods), and these have helped
tremendously.

– But, much like a doctor, most of the advice that I
have for you is about hygiene.

• Today I will try to answer two questions:
– How to write code cleanly and effectively at the

level of lines and routines.
– How to think about and execute on software

design more generally.

17

Write Programs for People, Not Computers

• Scientists writing software need to write code that
both…
– Executes correctly
– Can be easily read and understood by other

programmers (especially the author’s future self).
• If software cannot be easily read and understood, it is

much more difficult to know that it is actually doing what
it is intended to do.
– Human working memory is limited, human pattern

matching abilities are finely tuned, and human
attention span is short.

– A program should not require its readers to hold
more than a handful of facts in memory at once.

Wilson, Greg, et al. "Best practices for scientific computing." PLoS biology 12.1 (2014): e1001745.

18

Clean Code

Robert Martin, author of the book Clean Code, asked several
famous/influential developers what they thought the phrase
“clean code” meant to them.

19

What Makes Code “Clean”?

Robert Martin, author of the book Clean Code, asked several famous/influential
developers what they thought the phrase “clean code” meant to them.

“Clean code is simple and direct. Clean code reads like
well-written prose. Clean code never obscures the
designer’s intent but rather is full of crisp abstractions
and straightforward lines of control.”

“You know you are working on clean code when each
routine you read turns out to be pretty much what
you expected.”

Grady Booch

Ward Cunningham

20

Why Does “Clean” Matter?

• Most software development consists of reading and using other people’s code, or
code you yourself wrote in the past.
– Scientific software needs to be accessible and interpretable just as much as, say, a research

paper.

• Debugging is twice as hard as writing a program in the first place. If you are as
clever as you can be when you write it, how will you ever debug it?[1]

• Research code is an idea in motion. It should be written in a way that allows you
to comfortably express new ideas as they emerge in the research process.

[1] https://v4.software-carpentry.org/softeng/principles.html

21

Clean Code: Some Key Concepts

1. Names
2. Documentation
3. Functions

22

Clean Code: On Names
• Naming is perhaps the most powerful cognitive tool that we humans

possess.
• Names are everywhere in software. We name our variables, our

functions, our arguments, classes, and packages. We name our
source files and the directories that contain them.

• But what’s in a name?
• Choose names that…

– are meaningful
– convey your intentions
– are pronounceable and searchable

23

On Names: Use Meaningful Names

fxd = dom.xd(i) + dom.xdd(i) * dt

”Wait, what’s
wrong with this?!
If you just follow
along with the
research paper…”

The code and the paper are
separate, co-equal entities.
Each should be able to explain
itself on its own.

24

On Names: Use Meaningful Names

fxd = dom.xd(i) + dom.xdd(i) * dt

There’s a variable called X involved.
Also a ‘T’.

25

On Names: Use Meaningful Names

fxd = dom.xd(i) + dom.xdd(i) * dt

There’s a variable called X involved.
Also a ‘T’.

function?
final?
first?

derivative
or maybe
delta? derivative derivative

of derivative delta?

26

On Names: Use Meaningful Names

fxd = dom.xd(i) + dom.xdd(i) * dt

There’s a variable called X involved.
Also a ‘T’.

function?
final?
first?

derivative
or maybe
delta? derivative derivative

of derivative delta?

“the final velocity of an object is
equal to its initial velocity added
to its acceleration multiplied by
time of travel.”

Compute the final velocity
on the X dimension at
index i and store it in fxd.

27

On Names: Use Meaningful Names

fxd = dom.xd(i) + dom.xdd(i) * dt

There’s a variable called X involved.
Also a ‘T’.

function?
final?
first?

derivative
or maybe
delta? derivative derivative

of derivative delta?

“the final velocity of an object is
equal to its initial velocity added
to its acceleration multiplied by
time of travel.”

Compute the final velocity
on the X dimension at
index i and store it in fxd.

The velocity and
acceleration data are
held by the domain
object and can only be
reached through
accessor methods.

28

I’m having to explain all this to you because the
line itself, in isolation, doesn’t give you enough to
go on.

Whether consciously or not, the reader is having
to do these mental gymnastics for every line of
code we write.

29

On Names: Use Meaningful Names

fxd = dom.xd(i) + dom.xdd(i) * dt

finalVelocityX = domain.getVelocityXAt(i) +
domain.getAccelerationXAt(i) * deltaTime

“But this will make
dense mathematics
code hard to read!”

• Vary lengths of names
according to their scope.

• Use spaces and line breaks.
• Decompose functions further.

30

On Names: Convey Your Intent

shearupdate

Is this variable name
meaningful? +

shear update
Yes!

31

On Names: Convey Your Intent

shearupdateBut what about the intent? The
name of a variable, function, or
class, should answer all the big
questions. It should tell you…
• why it exists
• what it does
• how it is used

a function?

a quantity?

a flag?

32

On Names: Convey Your Intent

int shearupdate = 1;
if (update->setupflag)

shearupdate = 0;
<…>
if (shearupdate) {

shear[0] += vtr1*dt;
shear[1] += vtr2*dt;
shear[2] += vtr3*dt;

}

shearupdate

shouldUpdateShear
shearUpdateAmount

updateShear

33

On Names: Use Names That Are Pronounceable And Searchable

• If you can’t pronounce it, you
can’t discuss it without
sounding like an idiot. This
matters because programming
is a social activity.

• Single-letter names and
numeric constants have a
particular problem in that they
are not easy to locate across a
body of text.

m_qqc_monoq

/em kksi: mɒnəʊkʌ/
“Em k-k-see mono-cue”

The Quadratic term coefficient for ‘q’,
which is the measure of viscosity of

the material.

34

Clean Code: On Documentation

• Documentation is expensive
and you’re unlikely to do it.
Don’t lie to yourself.

• Explain yourself in code.
– Don’t comment bad code—

rewrite it!

• But comments can be helpful if
used judiciously.

35

Clean Code: On Functions

• Functions do things. They enclose a set
of instructions that we want to perform.

• Another way of looking at functions is
that they’re a way of making code
intellectually manageable.

• There are many ways to organize a
program into different functions.

• Some good rules of thumb:
– Functions should be small.
– They should do only one thing.
– Don’t repeat yourself.

𝑚𝑎𝑖𝑛()
𝑓()

𝑟𝑒𝑎𝑑𝐹𝑖𝑙𝑒()

36

On Functions: Functions Should Be Small

• The first rule of functions is that
they should be small.

• The second rule of functions is
that they should be smaller than
that.

• Uncle Bob claims that 20 lines
per function is a good target to
aim and, ideally, they should be
even smaller.

37

On Functions: Functions Should Do One Thing

• Functions should do one
thing.
– They should do it well.
– They should do it only.

• This is a good heuristic for
keeping functions small.

• Let’s use a real-world
example...

void PairGranHookeHistory::compute(int
eflag, int vflag)
{

}

38

On Functions: Functions Should Do One Thing
• Update rigid body info for owned & ghost atoms if using FixRigid masses.

• Loop over neighbors of my atoms.

• Unset non-touching neighbors.

• Compute relative translational velocity.

• Compute normal component.

• Compute tangential component.

• Relative rotational velocity.

• Compute MEFF = effective mass of pair of particles

• Compute normal forces = Hookian contact + normal velocity damping

• Compute shear history effects

• Rotate shear displacements

• Tangential forces = shear + tangential velocity damping

• Rescale frictional displacements and forces if needed.

• Compute forces and torques.

39

On Functions: Functions Should Do One Thing
• Update rigid body info for owned & ghost atoms if using

FixRigid masses.

• Loop over neighbors of my atoms.

• Unset non-touching neighbors.

• Relative translational velocity.

• Compute normal component.

• Compute tangential component.

• Relative rotational velocity.

• Compute MEFF = effective mass of pair of particles

• Compute normal forces = Hookian contact + normal
velocity damping

• Compute shear history effects

• Rotate shear displacements

• Tangential forces = shear + tangential velocity
damping

• Rescale frictional displacements and forces if
needed.

• Compute forces and torques

33 lines
~30 lines

9 lines
3 lines
4 lines

3 lines
3 lines

10 lines

2 lines
5 lines

9 lines

8 lines

16 lines
19 lines

“All this code is
related! Besides,
function calls are
expensive!”

• Related? Sure, but they do different things!
• Function call overheads are generally quite small.
• In any case, avoid pre-mature optimization! Write the

code in a clean way first, then optimize it.

40

On Functions: Don’t Repeat Yourself

• Duplication may be the
root of all evil in software.

• Many innovations in
software development
have been an ongoing
attempt to eliminate
duplication from our
source code.

• By splitting off frequently
repeated code into
functions, you make the
code easier to test and
change.

void f(){
//Compute F
//Save data to file.

}

void g(){
//Compute G
//Save data to file.

}

void h(){
//Compute H
//Save data to file.

}

void saveData(){
//Save data to file.

}

saveData()

saveData()

saveData()

41

Clean Code: Recap

• Choose names that…
o Are meaningful
o Convey your intentions
o Are pronounceable and searchable

• Explain yourself in code.
o Don’t comment bad code, rewrite it.

• Write functions that…
o That are small.
o That only one thing.
o That don’t force you to repeat yourself.

Next: On Design

42

What is Design?

• Many researchers that I’ve interviewed
picked up programming on their own,
and they became adept at crafting
scripts to solve their problems.
– However, they don’t always have a clear

concept of design as something separate
from the act of writing code.

• Software design is about
conceptualizing and framing the way
that a software system is organized.

• We talked about steps #4 and #5 in the
last section. I want to focus on the first
three now.

1. Software System

2. Division into
subsystems/subpackages

3. Division into
classes/submodules.

4. Division into data and
routines.

5. Internal Routine Designfor each…
do X…
then call
f…

43

What is Design About?

• Quality isn’t an accident, it’s the result of deliberate strategy.
• Design is about making mistakes, that’s the point. It’s cheaper to

make mistakes and correct design than to write every line of code
and then have to fix it all afterwards.

• Design is about trade-offs. No software can be perfect (see the
Fallacy of Maximizing All).

44

Design Principles: Some Key Terms

Information Hiding: the
principle of segregation of

the design decisions in
a computer program that are

most likely to change, thus
protecting other parts of the

program from extensive
modification if the design

decision is changed.

45

Design Principles: Some Key Terms

Coupling: the degree of
interdependence between
software modules.

Cohesion: the degree to which
the elements inside a
module belong together.

46

Design Principles: Some Key Terms

The Principle of Least Knowledge
(The Law of Demeter):
• Each unit should have only limited
knowledge about other units: only
units "closely" related to the current
unit.

• Don't talk to strangers.
• Only talk to your immediate friends.

47

On Design: A Real-World Example

CARBON_SCALING_SLOPE =
input(“Enter the 13C scaling factor
SLOPE:”)

for carbon in
conformation[CARBON_CS]:

carbon.append(abs((CARBON_INTERCEPT-
float(carbon[ISOTROPIC_VALUE]))
CARBON_SCALING_SLOPE))

The code that handles the
user’s input interacts
directly with the physics
code through shared
global variables.

Changing the I/O code
could affect the operation
of the physics code, even
though these things are
conceptually unrelated.
They are tightly coupled.

48

Anticipating Change

• Information hiding is about
anticipating what is most likely to
change, and isolating those
components. But what can change?
– Domain math/science
– Hardware dependencies
– Input and output
– Nonstandard language features
– Difficult design/construction areas
– Status variables
– Data-size constraints

49

How To Isolate Code

• Keep conceptually dissimilar code in separate files.
• Program against function interfaces, make no assumptions

about the internal workings of functions.
• In the case of object-oriented languages, use objects to

encapsulate data and routines to minimize necessary
knowledge.

50

A Sliding Scale of Coupling

𝑎𝑛𝑎𝑙𝑦𝑧𝑒(𝑃ℎ𝑦𝑠𝑖𝑐𝑠𝑀𝑜𝑑𝑒𝑙)
Simple-object coupling

𝑝ℎ𝑦𝑠𝑖𝑐𝑠()

Simple-data-parameter coupling

𝑝ℎ𝑦𝑠𝑖𝑐𝑠() 𝑎𝑛𝑎𝑙𝑦𝑧𝑒(500, 𝑇𝑟𝑢𝑒)

𝑎𝑛𝑎𝑙𝑦𝑧𝑒(𝑀𝑜𝑑𝑒𝑙)
Object-parameter coupling

𝑝ℎ𝑦𝑠𝑖𝑐𝑠() 𝑣𝑖𝑠𝑢𝑎𝑙𝑖𝑧𝑒(𝑀𝑜𝑑𝑒𝑙)

51

• The analysis module states that a caller must call
initializeAnalysis before analyze. The physics
module assumes that this has already been called, and
only calls analyze.

• Physics modifies a global variable that Analysis depends
upon.

• Visualization talks to the UI, and it can modify and pass
back the physics model to the Physics module.

Examples of Semantic Coupling

Semantic coupling is dangerous because changing
code in one module can break code in another

module in ways that are completely undetectable by
the compiler.

52

Conclusion

• The software you share is generally more useful to you than the
software you don’t.

• All the fear and uncertainty around software can be managed through
deliberate commitments to good practices.

• Scientific software needs to be accessible and interpretable just as
much as, say, a research paper. Better yet, it needs to be even more
accessible and interpretable than that!

• Write programs for people, not computers.

53

Passages Adapted From These Highly Recommended Texts

Martin, Robert C. Clean Code: A Handbook
of Agile Software Craftsmanship. Pearson
Education, 2009.

McConnell, Steve. Code Complete.
Pearson Education, 2004.

Gamma, Erich. Design Patterns: Elements
of Reusable Object-oriented Software.

Pearson Education, 1995.

