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Abstract—The development of scientific software is, more than
ever, critical to the practice of science, and this is accompanied
by a trend towards more open and collaborative efforts. Unfor-
tunately, there has been little investigation into who is driving
the evolution of such scientific software or how the collaboration
happens. In this paper, we address this problem. We present
an extensive analysis of seven open-source scientific software
projects in order to develop an empirically-informed model of
the development process. This analysis was complemented by
a survey of 72 scientific software developers. In the majority of
the projects, we found senior research staff (e.g. professors) to be
responsible for half or more of commits (an average commit share
of 72%) and heavily involved in architectural concerns (seniors
were more likely to interact with files related to the build system,
project meta-data, and developer documentation). Juniors (e.g.
graduate students) also contribute substantially — in one studied
project, juniors made almost 100% of its commits. Still, graduate
students had the longest contribution periods among juniors (with
1.72 years of commit activity compared to 0.98 years for postdocs
and 4 months for undergraduates). Moreover, we also found that
third-party contributors are scarce, contributing for just one day
for the project. The results from this study aim to help scientists
to better understand their own projects, communities, and the
contributors’ behavior, while paving the road for future software
engineering research.

I. INTRODUCTION

Computing technologies have had a profound impact on the
practice of science: simulation and data-intensive computation
are now known as the third and fourth paradigms of science,
on equal footing with experimentation and theory [1]. This
shift has accelerated the growth of a diverse ecosystem of
scientific software projects. The term “scientific software” is
an umbrella that covers all aspects of the research pipeline,
including codes for simulation and data analysis, dataset
management, communication infrastructure, and underlying
mathematical libraries [2]. It is software that exists “to support
the exploration of a scientific question” [3].

What makes scientific software projects different from
traditional software projects? Scientific software operates at
the boundaries of human knowledge and tends to be in
constant flux as new insights motivate unforeseen changes in
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requirements [4]. As noted by Segal [3], this pressing need to
produce or enable the production of knowledge lends itself to a
mindset where “software is valued only insofar as it progresses
the science”, often in conflict with the need to have reliable,
maintainable code. However, Turk and colleagues remarked
that, in an era of increasing scale and complexity, “the cyber-
infrastructure necessary to address problems in computational
science is no longer tractably solved by individuals working in
isolation” [6]; broader, more open collaboration necessitates
a shift in how the software is developed. From a software
engineering research perspective, this motivates important
questions about how the software evolves, who develops it,
and how quality can emerge from this process.

We focus on the people meeting the demand for scientific
software. Such scientific software developers represent a pop-
ulation so far not properly understood, since their characteris-
tics, motivation, and needs to contribute to scientific software
projects are intrinsically different than what drives traditional
open source contributors. For instance, the actors that play the
scientific developer role include students, postdocs, faculty,
and staff. Their knowledge, skills, and goals can vary greatly,
while also contributing to projects in different ways throughout
their tenure. As a consequence, the plethora of existing studies
on open source contributors might not help much, since they
hardly take into account their roles or the complexity of the
domains that scientific software is immersed in.

Much is still unknown about the state-of-the-practice of
developing scientific software. For instance, who performs the
majority of commit activities? Who fixes bugs? In order to bet-
ter understand the relationship between these contributors and
the software, we first leverage the availability and transparency
of social coding websites to inspect data related to source
code contributions and contributors. We selected a curated list
of seven open-source scientific software projects by searching
three different platforms: the Journal of Open Source Software,
GitHub, and DOECODE, a platform for publicly funded
DOE research codes. For each selected project, we identified
the roles played by different contributors by analyzing each
projects’ documentation, websites, and other readily available
sources. We then surveyed representative scientific software
developers in order to cross-validate the findings found via
the repositories’ analysis.

Using quantitative and qualitative data, our study produced
a set of findings, some of which confirmed anecdotal accounts



while others were unexpected. We discuss them in detail in
Section In the following, we highlight three of them.

o Senior researchers tend to be the most active and
prolific contributors in terms of commits and file
creation. In four of the seven projects we studied, faculty
and staff contributors were responsible for half or more
of commits made to the project (with an average commit
share of 72%). In five projects, senior members were also
responsible for the majority of files created and, by that
measure, the resulting project structure. This influence
over the overall direction of the software project was also
evident in the fact that senior researchers were the most
likely to have interacted with files related to the build
system, project metadata, and developer documentation.

o Junior contributors, especially graduate students, are
critical drivers of new features as well as supporting
activities like test creation. On average, junior contrib-
utors were responsible for 42% of commits across all
projects we studied; in one case, juniors were responsible
for nearly 100% of all commit activity. The majority of
these commits came from graduate students, who had
the longest contribution periods among juniors (with 1.72
years of commit activity compared to 0.98 years for
postdocs and 4 months for undergraduates). Similar to
senior contributors, junior contributors are significantly
involved in creating new features, improving existing
capabilities, and fixing bugs.

« An open-source model facilitates external contribu-
tions, but the results are mixed. On one hand, an
open-source model makes it easier to attract thirdparty
contributors to help grow and maintain the software.
However, the software is also made for and by members
of a relatively niche and intensely preoccupied commu-
nity. In the majority of projects we studied, thirdparty
contributors tended to be domain expert users who were
only active for one day. We also note, however, that
these same contributors are more likely to offer defect-
correcting commits, which is highly valuable.

II. BACKGROUND

Scientific software projects are very complicated undertak-
ings that have limited budgets, sometimes a lack of software
development expertise, and the inherent complexity of the
domain [2].

Senior researchers and staff. As is common in the sciences,
a typical software project coalesces around a principal in-
vestigator (PI) and one or more co-investigators (Co-Is) who
have secured the resources needed for development (e.g. time,
money). The reasons for developing software are varied, but
include the use-value of the software as a vehicle for research,
academic credit, and (in the case of commercial software)
revenue [7l]. However, it is well-known that the scientist-as-
software-developer rarely has the time to maintain the code
that they write [8]]. Time and energy must be divided between
writing papers and grant proposals, reviewing manuscripts,
mentoring, and conducting experiments et cetera. Hannay et

al. found while 84% of interviewees considered developing
scientific software important for their own research, the aver-
age scientist spent just 30% of their work time on development
activities [9].

Junior researchers. In order to meet the labor needs for
development, established researchers often rely upon student
and post-graduate labor; juniors are seen as young, full of
ideas, and (most importantly) inexpensive personnel [10].
According to Heroux 2017, senior members provide a stable
presence, determining the scientific questions and the trajec-
tory for the software; they are familiar with the conceptual
models and the software design, but they may spend less
time writing actual code. Juniors, meanwhile, are transient
members with a dual focus on contributing code and producing
publications; they undergo a staged process of onboarding,
becoming experienced, and departing, and during this time
they may make substantial contributions to the software [L1].

Third party contributors. For every developer of a critical
scientific software package, countless more depend upon it.
However, unlike in conventional software development, there
are no clear-cut distinctions between users and developers,
and, as Turk 2013 argues, trying to force these terms is
“actively harmful” to our understanding [6]. Even when they
are not directly responsible for a package, it is not uncommon
for scientific end-users to write code of their own, such as
“glue code” that draws together different software tools into a
workflow or custom components that utilize others’ software.

The decision to use another’s software creates risks because
it is not guaranteed that the software will be supported
in the future or kept current with the pace of changes in
the field [12]. Converting users into contributors is perhaps
even more difficult. However, as Bangherth and Heister 2013
explains, scientific software libraries require the support of
a broader community of users and contributors in order to
survive in the long term [13]].

III. METHODOLOGY

In this section, we describe our research questions and our
approach (Section [[II-A). For the repository mining portion
of our work, we outline our data collection methodology
(Section [III-B)), the corpus we have assembled in order to
find the answers to our research questions (Section [[II-D),
and how we distinguish contributors’ roles (Section |lII-E). For
our the survey section of this work, we describe our protocol
(Section [II-F).

A. Research Questions

In this paper, we characterize the habits of scientific soft-
ware contributors and contributions. Some of our questions are
intended to test common wisdom, while others are aimed to
probe deeper into the relationships between project contribu-
tors. Our research questions are as follows:

RQ1: What is the tenure of different contributors by role on a
scientific software project?
RQ2: What is the breakdown of team contributors by role?



RQ3: How much of the development work is done by different
contributors by role?

What kinds of software maintenance and evolution ac-
tivities do contributors perform?

How do scientific software developers perceive their own

software development process?

RQ4:
RQs5:

Our first question RQ1 is demographic in nature based on
aggregated project data, and tests the representativeness of
our dataset. RQ2 enables us to make inferences about the
division of labor based on personnel composition. Next, RQ3
digs into the kinds of responsibilities, such as file ownership
and test files creation, that different contributors take up.
RQ4 investigates what kind of maintenance and evolution
changes, such as adding new features or fixing bugs, do
these contributors contribute to the project. Finally, to provide
answers to RQ5 we surveyed 72 scientific software developers
regarding their own contribution behavior.

B. Data Collection Procedure

Figure |1| depicts the steps followed by our data collection
procedure.

@{ {DOECODE} { Joss } [ GITHUB }
1,039 324 500
W ) J/
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\
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Fig. 1: Steps of the data collection procedure.

The first step @ is aimed to find representative projects.
We relied upon three data sources. First, we consulted DOE-
CODEﬂ a platform for publicly funded DOE research codes.
Next, we searched the Journal of Open Source Software
(JOSS a database of open source research software [14]],
which requires all entries be publicly available. Finally, we
did searches by topic on GitHub to find repositories with
relevant tags (e.g., computational-neuroscience,
bioinformatics). This yielded roughly 1,039 repositories
from DOECODE, 324 from JOSS, and another 500 from
GitHub. These numbers corresponds all projects in these
platforms, except for GitHub, in which we stopped searching
when we found 500 projects. This resulted in an initial set of
1,863 open source scientific software projects which we chose
to take into consideration (step @).

Uhttps://www.osti.gov/doecode/
Zhttps://joss.theoj.org/

From this list, we manually analyzed these repositories over
several days (step ), filtering the results according to the
following criteria:

C1) Projects should have a contributor list. The repository
must link to a detailed contributor list or research
team page that identifies the roles played by different
contributors to the project. We use this data to later
distinguish contributors’ roles (Section [[II-E)).

Projects should be active. The project must be at least
a year old, and the repository must have more than 500
commits. For example, a large number of projects on
DOECODE were developed internally and then later
released to the public. Thus, the GitHub repository is a
shallow copy of the most recent version with no commit
history.

Projects should be collaborative. There must be at least
three contributors which can be positively identified, and
at least one these must be considered a “junior” contrib-
utor. Many research projects on GitHub are small codes
developed by individual researchers in isolation without
any significant collaborations with others. Others are
collaborative projects between senior staff at different
institutions.

After applying these filters, we ended up with a curated list
of seven scientific software projects (step @).

C2)

C3)

C. Characterizing the population

We believe that the 1,863 projects in our population of
repositories we is a representative sample of scientific software
projects that can be found in the wild. However, many of
these projects are unlikely to provide useful information for
our purposes, such as short-lived or single-user research codes,
snapshots of codes released for publications, untouched clones
of decades-old legacy projects, or mirrors of private repos-
itories lacking history information. As shown on Figure [2|
filtering for the number of commits and contributors eliminates
roughly 8 out 10 of the repositories; the remainder are most
likely to be active, collaborative, and (most importantly) to
have a rich history on GitHub that we can pull apart. The
median project within this group projects has 12 contributors
and 1770 commits spread out over 2.93 years.

We can examine a sample of 5000 of the contributors
to these repositories, using their number of commits and
the number of days spanned by those commits as a proxy
for involvement. 29% of these contributors make only one
commit, and 40% are active for no more than a day. Among
contributors more active than these, the average individual
has an active tenure of 1.37 years, and during this time they
make 116 commits (6% of the commit activity of the median
project). If we zoom in on any one of these contributors,
we can observe their activities, but what interests us most
is how their identity relates to those activities. This is a
more challenging problem to solve, and analysis is much less
scalable. Instead, in this work we take a deep dive into a
handful of projects whose members we can identify, as a case
study into the composition of these teams.
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Fig. 2: A symmetric log plot of the number of contributors and
commits of repositories considered in this work, with those
falling beneath the thresholds colored in gray. After these first
filtering steps, 359 repositories remain (19% of the original
total), comprising the work of around 10000 contributors.

D. Studied projects

Our data collection process yielded a total of seven projects
which met our criteria. The descriptions of these projects can
be found on Table [II

Taken together, we argue that our sample of scientific
software projects is relevant due to their diversity: 1) they
are written in up to four different programming languages
(although mainly written in C++, Python, and Scala), with an
average of 110.13 kLOC; 2) they span very different domains;
3) they have an average of 5.2 years of historical records; and
4) they are written by scientists that do not necessarily have
a computer science or (in particular) a software engineering
background. When looking at the number of stars, one might
argue that our selected scientific software projects have low
popularity. However, as a recent work reported, the median
number of stars of R packages published on GitHub is 2 [20].

E. Establishing identities of contributors

Our step was to establish the identities of contributors.
We followed the strategy used by Sheltzer and Smith [21]]
and first scraped data from laboratory websites and project
documentation. This was followed up by searching depart-
mental directories and performing web searches in order to
disambiguate contributors where necessary.

The final step in this process is to code each individual
in our dataset. This amounts to reviewing the assembled
information about each individual and assigning a label to
them. For the purposes of this study, we sorted subjects
into the following categories: undergrad (i.e., undergraduates
students), gradstudent (i.e., master’s and doctoral students),
postdoc (i.e., postdoctoral researchers), staff (i.e., investiga-
tors and support staff), thirdparty (i.e., external collabora-
tors), and unknown (i.e., which the identity could not be

established). In cases where we had to rely on incomplete
GitHub profile data (e.g. unlisted thirdparty contributors), we
attempted to extract names from handles (e.g. johnsmith79
— John Smith) and cross-referenced those names with
web searches for similarly named researchers in the relevant
field; where we could not be reasonably convinced that the
identities matched, the contributor was left as unknown. To
ease understanding, we further group these contributors as
juniors (i.e., gradstudent, undergrad, and postdoc), seniors
(i.e., staff), and thirdparty.

F. Complementary Survey of Developers

The majority of the findings of this work come from a
quantitative analysis of repositories. To triangulate our findings
and better understand the perceptions of scientific software
developers, we additionally performed a complementary qual-
itative analysis of scientific software development teams. We
sought to capture, in their own words, (1) who contributes
to their projects, (2) how they prepare for contributors to
join or leave, and (3) what roles different people play in the
development of the software.

To do this, we designed an online survey. For each partic-
ipant, we presented three multiple choice questions on their
background and experience in developing scientific software,
followed by five open-ended questions addressing their team
composition and their division of labor. Participation in the
survey was voluntary and responses were anonymous. For the
open-ended questions, we coded the answers and organized
them into categories following the guidelines on open coding
procedures [22] (cf. [23]]).

To identify the target population, we reached out to devel-
opment teams whose projects had been accepted to the Journal
of Open Source Software (JOSS); we used the JOSS Github
repository, which is used to track submissions, to collect in-
formation on points-of-contact. From the accepted submissions
to JOSS, we identified 273 scientific software developers that
either owned or made the majority of contributions to a GitHub
project, and recruited them by email. 17 emails were not sent
due to mailing errors, and 11 emails were returned due to out
of office automatic replies. Over the period of two weeks, we
received 72 answers (a response rate of approximately 30%).

IV. ANALYSIS

In this section we provide answers to each research question.

RQ1: What is the tenure of different contributors by role on a
project?

For RQ1 we want to know what the expected contribution
period is for different contributors based on their project role.
While students may spend years with a research team and staff
for decades, only a limited portion of that time will be spent
on software development activities. Knowing how much labor
is available to a team helps staff to understand issues related to
task allocation or job rotation. To gather this information, we
apply the Kaplan-Meier procedure [24] to perform a survival
analysis of participants from all projects organized by role.



TABLE [: List of studied projects. Age is present in years. KLOC is calculated using the cloc utility, encompassing blank,

comments, and code lines. PL. means Programming Language.

Contributors

Project/GitHub . kLOC  Commits  Stars PL Age  Description
Identified (%)

Chaste (Chaste/Chaste) [15] 97% 371,4k 4,7k 22 C++ 8 Tissue and cell level electrophys-
iology, discrete tissue modeling,
and soft tissue modeling

Khmer (dib-lab/khmer) [16] 90% 145,1k 6.6k 528 Python 7 Nucleotide k-mer counting, filter-
ing, and graph traversal

PyGBe (barbagroup/pygbe) [17] 100% 12,4k 0.9k 28 Python 6 Biomolecular electrostatics and
nanoparticle plasmonics

LBANN (LLNL/Ibann) [[18] 99% 66,8k 3,5k 40 C++ 4 Artificial neural network toolkit

Hail (hail-is/hail) 98% 72,9k 3,1k 357 Scala 2 Genomic analysis

Genn (genn-team/genn) [19] 96% 37,4k 1,8k 71 C++ 6 Neuron and synapse modeling

openMOC (mit-crpg/openMOC) 90% 21,6k 2,6k 50 C++ 4 Nuclear reactor physics

In the medical domain, survival analysis measures the
fraction of patients who remain alive for a certain amount
of time after treatment. In our work, survival refers to how
long it takes for a contributor to become inactive. For the
purposes of this analysis, we consider a contributor inactive
if they have not made a commit within the last 180 days,
following the example of Lin et al. [23]; this is more strict
than is done in other works (cf. [26], one commit per year
counts as active). We do this because contributors may start or
cease their commits in the middle of their tenure (e.g., a junior
pivoting towards finishing a thesis). After tuning with different
knobs, we found that six months was a reasonable limit.
Moreover, recent work has also experimented with different
thresholds (e.g., 30, 90, 180 days), and results suggest the same
trends over the experiments [25]. We used the gitstats
utilit to collect information on the length of each subject’s
participation in their respective projects.

The results of the analysis can be seen on Figure [3] This
figure shows a series of declining horizontal steps which
approaches the true survival function for that population.
The x-axis represents the survival duration, while and the y-
axis indicates the probability that a contributor can survive
(i.e., keep actively contributing to the project). The median
survival time per group is 4.06 years for staff, 1.72 years
for gradstudents, 0.98 years for postdocs, 4 months for
undergrads, and just a day for thirdparty contributors.

A careful, contextualized reading of this data proves in-
formative. With regards to juniors, aside from staff, we see
that gradstudents are the most likely to stay around. That
being said, a typical PhD student (as almost all of the graduate
students in our dataset are) takes 5 years to graduate, and this
means that the median gradstudent only spends 34.52% of
their tenure contributing to a project. Meanwhile, postdocs
spend even less time than gradstudents as contributors, even
though the typical term limit of postdocs today is also 5
years [27]; that being said, postdocs are brought on-board
with prior knowledge that they can immediately apply to
the software project. Finally, undergraduate students in our
dataset only spend one semester out of their 4 year education
participating in developing scientific software. Taken all to-

3https:/GitHub.com/hoxu/gitstats
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Fig. 3: A Kaplan-Meier survival plot of contributors to projects
in our dataset, grouped according to role. S(t¢) indicates the
number of individuals in the population who are still actively
contributing ¢ days after starting.

gether, the median junior in our projects spends only 24.84%
of their time in their position doing software development
work.

Meanwhile, seniors provide the most stable presence, with
a median survival time of 4 years. We note that this is affected
by right-censoring because the average age of our projects is
5 years. However, our evidence suggests that senior members
who do contribute code may not do so indefinitely. Once the
software reaches a point of maturity, they may hand off the
work to juniors. In other cases, they may leave virtually all
the work to juniors. Lastly, we found that in the projects we
studied, thirdparty contributors tend to remain at the periphery
and do not engage with a project for any significant length of
time; as we observed, thirdparty contributors stay, on average,
1 day.

RQ?2: What is the breakdown of team contributors by role?

For RQ2, we are interested in the breakdown of contrib-
utors to each project by role. How many people contribute
to projects overall? How can we characterize them? A key
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distinction that we are making is that this is not the same
thing as the number of contributors listed as team members
on the webpage of the project or research group. For example,
a graduate student may be a user of the software but not a
contributor, and in the case of projects like Chaste, we can
have multiple staff members responsible for design work and
guidance of students but who have no commits to their name.
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Fig. 4: For RQ2, for each project we present a bar chart with
totals of identified contributors sorted by role.

genn

We showcase our results on Figure Taken together,
JUNIOR members make up the majority of team contributors
(average 69%; median 80%), with the remainder being SE-
NIORS (average 31%; median 20%). Meanwhile, in all but one
of the projects we studied, we were able to identify thirdparty
contributors (average 20%; median 27%). Additionally, as a
rule, both team members and thirdparty contributors that we
identified have a background relevant to the domain of the
project, something which we learned by analyzing biographi-
cal information used to classify contributors by role.

RQ3: How much of the development work is done by different
contributors by role?

For RQ3, we want to characterize the amount of develop-
ment work that is done by these different actors. To begin,
we consider the share of commits produced by different
contributors, the number and frequency of commits being well-
worn metrics for engagement and investment in a project [26],
[28]. Taking averages across all projects that we studied, half
or more of commits are made by senior members (average
50.76%; median 63.29%). However, the majority of the other
half are commits by junior contributors (average 42.9%; me-
dian 36.7%). Moreover, for 4 out of 7 projects (Khmer, Chaste,
Hail, and openMOC), senior researchers are responsible for
a plurality of commits (with an average commit share of
77.12%; median 73.34%); the opposite is true for Genn,
LBANN, and PyGBe (average share 23.92%; median 22.58%),

with LBANN having a more even split between junior and
senior members. We also note that, for the projects we have
studied, thirdparty contributors tend to play a very minor role
in this regard; only LBANN has a notable share of commits
attributable to thirdparty users (17.7% versus an average of
3.59% and median of 0.06%). Overall, in all projects but
one (Hail), junior contributors produce a significant share of
commits, meaning that even when seniors do most of the
heavy lifting, juniors play an essential role in the realization
of the project.

However, while both junior and senior alike generate
significant amounts of commit activity, this is not to say that
the scope of their activities is comparable. To better understand
this, we consider interactions with and ownership of files. For
the purposes of this work, we record a user as interacting with
a file each time they make a commit that touches that file. By
that measure, the typical junior interacts with a much smaller
percentage of files compared to a senior (average 5.85% vs.
20.35%; median 0.65% vs. 11.51%). This is to say that a
distinguishing characteristic of junior developers in our corpus
is that they often have a narrow focus on a particular subset of
a project. Meanwhile, the same is especially true for thirdparty
contributors who interact with an even smaller percentage of
files (average 1.64%; median 0.66%).

Likewise, we can also consider file creation. Earlier work
by Poncin et al. [29] addresses file creation in their opera-
tionalization of “core” developers, as frequent creation and
modification of files indicates that a user is helping to drive
the vision or direction of the software. Related to this, in
a recent study of large-scale open source projects, Lin et.
al [25)] found users who created files tended to be longer-
term contributors than those who modified files. In 5 out of 7
of the projects we studied (Khmer, Chaste, Hail, openMOC,
and Genn), senior team members created the majority of files
(average of 69.44%); LBANN is almost evenly split by this
measure, and PyGBe, as a student-driven project, has only a
quarter of its files originating from Senior members.

RQ4: What kinds of maintenance and evolution activities do
contributors perform?

What value do different kinds of contributors add to a
project? For example, once a gradstudent exits a project, in
what ways did they influence the evolution of the software
during their tenure? We can find some evidence for this
through project pages and documentation when teams provide
an itemized list of accomplishments of different contributors
(as is the case for several of the projects in our study); it
is typical to see juniors receiving credit for implementing
novel features pertinent to their research, seniors for building
out infrastructure and performing maintenance, and thirdparty
contributors for providing support or helping improve the
codebase. However, relatively few projects provide this kind
of fine-grained information, and we would also like to be able
to interrogate those claims in an empirical way.

To answer our question, we present two views of the
development activities that elucidate the kinds of work that



different contributors produce. The first is an analysis of com-
mit messages based on the approach of Hattori and Lanza [28]],
and the second is an analysis of file paths involved in commits
based on the work of Vasilescu et al. [|30]]. In both cases, we are
interested in categorizing commit activity according to their
purpose or intent.

In the framework set out by Hattori and Lanza [28]], commits
are divided into four major categories of activity:

1) Forward engineering (Fwd), for instance, adding new
features;

2) Reengineering (Reng), for instance, refactoring activi-
ties;

3) Corrective (Corr), for instance, fixing bugs;

4) Management (Mgmt), for instance, updating documen-
tation.

In order to automatically classify commits into these cate-
gories, the authors compare the content of commit messages
against predefined word banks for each commit type based on
the earliest match found. For instance, consider the following
commit message: “This commit adds integrators support-
ing the combined, staggered, and pseudotransient forward
sensitivity analysis methods where the sensitivity equations
are solved alongside the forward equations.’ﬂ Unpacking the
semantics of this commit message requires extensive domain
knowledge and that is difficult to automate. However, the word
“add” is a match in the word bank for forward engineering;
it is reasonable to assume (in this case) that the commit is
adding a new feature to the software.

This approach is limited in that it only considers the lexical
content of messages, and it also fails to handle situations
where a commit may belong to more than one category, but
it remains useful as a diagnostic tool. To test the validity
of this classification scheme against our corpus, we chose to
manually classify a representative random sample of commits
drawn from across all projects. Assuming that all projects have
statistically similar commits (in the sense that the distribution
of commits by type are roughly the same), a sample of 378
commits might reflect the overall population of roughly 23,000
commits with a confidence level of 95% with an interval
of +5%. In order to arrive at the ground truth, our manual
classification considers not only commit messages but also the
artifacts (such as source code, documentation, and test data)
that were modified and the context in which that occurred
(such as preceding commits and related files).

TABLE II: Confusion matrix for validation of Hattori-
Lanza [28]] classification scheme. Unknown (Unk) commits
are those which the algorithm failed to classify.

Automated Manual Fwd Reng Corr Mgmt
Fwd 53 I1 I 14
Reng 3 60 0 13
Corr 1 4 60 5
Mgmt 7 14 11 16
Unk 9 36 5 55

4https://GitHub.com/trilinos/Trilinos/commit/e8e6d67

Table [IIl shows the confusion matrix between the automated
approach and the manual analysis. First, we note that because a
commit may fail to match against the word bank, it is possible
for this approach to fail to find a label. This happened for
27% of commits in our sample. We identified three causes
for this: (1) manual classification relied on words that were
outside of the word bank (e.g., “vectorized book-keeping
kernels”), (2) commit messages were automatically generated
and vague as to their purpose (e.g., merging an arbitrary
pull request), and (3) messages could be highly ambiguous
(e.g., “complete breakdown of intuition” or “it is all becoming
clear”). However, we consider this to be a more gentle form of
failure than attempting to shoehorn an unintelligible commit
into an arbitrary category.

For commits which were classified automatically, the man-
val and automatic approaches agreed 69% of the time; much
of the error was concentrated on management commits, only
a third of which were correctly labeled. If we limit our
consideration to just forward engineering, reengineering, and
corrective commits, then the automatic approach agrees 89%
of the time, with some minor confusion between forward and
reengineering activities. As such, we limit our consideration
to just those three.

The second approach we use is derived from that of
Vasilescu et al. [30], which categorizes commit activity by ex-
amining the filepaths involved in changes; file extensions (e.g.
.cpp versus . csv) and hints in file paths (e.g. /src/ versus
/test/ can clue us in to the purpose of a file and, by ex-
tension, the kind of labor that an individual provides a project
through their interaction with those files. The classification
algorithm itself is analogous to what was previously described:
filepaths are matched against a bank of regular expressions that
map to different categories of files. Unlike with the Hattori-
Lanza scheme, these results are much less ambiguous because
it is reasonable to assume that file extensions indicate actual
file types. For this work, we made several addenda to the
regexes used in the original paper in order to cover additional
programming languages (e.g., Pascal and Ada), data storage
types commonly used in scientific computing (e.g., HDF5 and
FASTA), as well as a handful of previously unaddressed build
and configuration artifacts (e.g., Dockerfiles and Gradle build
files). On Table and Table we provide results for our
two analyses as an aggregate of all contributors in the projects
we studied as a way of approximating a “typical” project.
The former shows what percentage of commits made by an
average individual are categorized as forward engineering,
reengineering, and corrective activities; the latter asks what
percentage of individuals have made at least one commit that
interacts with a file of a given type.

As a group, senior contributors have the highest average
share of forward engineering commits (33.37%), which is
to say that commits made by seniors are more likely to
include novel development work, such as adding or extending
software capabilities. Senior developers also play a key role
in realizing the supporting infrastructure of their projects, with
a majority having interactions with build, devdoc, and
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TABLE III: The relative share of automatically classified
commits of an average junior, senior, or thirdparty contributor.
Management commits are omitted.

Fwd Share  Reng Share  Corr Share
Juniors 26.76% 21.11% 15.93%
Seniors 33.37% 16.07% 14.91%
thirdparty | 19.98% 18.89% 39.45%

metadata files. Likewise, a plurality of seniors interacts
with data/database files (such as data for validation tests
and parameters for research models) and test files.

Next, the activities of junior contributors resemble that
of senior contributors in many key respects. Like seniors,
juniors universally interact with code files, and a compara-
ble share of their commits go towards forward engineering
(26.77% for juniors vs. 33.37% for seniors), reengineering
(22.11% vs. 18.90%) , and corrective (15.93% vs. 14.91%)
activities. Also like seniors, the majority of juniors interact
with build, devdocs, and test files (though in smaller
measures compared to Seniors), and this was true in general
for all projects we studied. This reinforces our earlier obser-
vations suggesting that their work is neither subordinate nor
peripheral compared to the work of seniors, but is instead
vitally important to the enterprise.

Finally, we consider thirdparty contributors who, as we
determined earlier, are relatively minor players who as a rule
only sporadically contribute to projects. Code and devdocs
aside, they scarcely interact with any kind of file. One point
that stands out, however, is that these contributors are more
likely to make corrective activities (with an average commit
share of 35.06%). This is to say that while they make very few
commits, the commits they do make are more likely to be bug
fixes; that suggests that thirdparty contributors are most likely
to be users of the software who have the domain knowledge
and development expertise needed to correct such bugs or
“scratch their own itch”. In essence, thirdparty contributor
behavior is similar to the kind of work produced by peripheral
developers, which are typically involved in bug fixes, and they
have irregular or short-term involvement in a project [31]], [32].

TABLE IV: The percentage of contributors in each category
who have at least one commit that interacts with a given file
type. N/A indicates that no matches were found for regexes
in any projects studied for a given category

Juniors ~ Seniors  thirdparty
Documentation 19.1% 26.0% 0%
Images 14.5% 22.2% 2.7%
Localization 2% 0% 0%
Ul N/A N/A N/A
Media 27.7% 33.3% 2.7%
Code 100% 100% 70.3%
Project Metadata | 36.2% 51.85%  8.1%
Configuration 34.0% 33.3% 5.4%
Build 63.8% 77.8% 29.7%
Devdocs 63.8% 88.8% 66.7%
Data/Databases 36.2% 63.0% 18.9%
Test 74.5% 85.2% 27.0%
Libraries N/A N/A N/A

RQ5: How do scientific software developers perceive their own
software development process?

For our final research question, we consider how scientific
software developers view their own projects based on our sur-
vey data; this provides us with points of comparison with our
quantitative findings. Among our survey respondents, those
we identified as being most responsible for their respective
projects, 36% of them were postdocs, 30% were non-academic
professionals, another 30% were students (undergraduate or
graduate), and 14% were professors. The majority of them
(62%) work for an university or college, 11% work for the
government, 8.5% work in industry, and the other 18.5% play
other roles. Regarding their highest academic degree, 76.4%
had already received or were working towards their doctorate
degree (18% have a master degree, and only 4% have bachelor
degree). They worked in a variety of fields, including computer
science, fine art, chemistry, political science, urban planning,
and neuroscience.

The majority of projects in our survey (61%) were devel-
oped by a team of people, though it is worth nothing that a
significant number of projects were the work of individuals
(39%). On average, these teams had 3.6 contributors (3rd
Quartile: 4.2, max: 15); this roughly aligns with the number
of active contributors in a given year in the repositories which
we mined (average: 3.8, 3rd quartile: 5, max: 11).

When we asked (Q5) what and how do they contribute, we
observed that 50 respondents reported software development-
oriented activities such as fixing bugs, developing scripts
to support research, improving documentation, and adding
tests. Strongly tied with software development activities, 18
respondents reported to contribute to non-software activities,
such as paper writing, grant writing, running experiments, etc.
Along these lines, three respondents perceive their contributing
role as “Conducting research that feeds back into the project”.
Regarding how do scientific software developers get trained
to do their jobs (Q6), 70% of the respondents were self-
taught, although some of them received mentorship from
senior contributors (e.g., “Shadowing a more senior developer
for a week or two”), while others benefited from online
training programs (e.g., “The Molecular Sciences Software
Institute (molssi.org) training programs.”), took advantage of
their own documentation (e.g., “We make sure that the docs are
self-contained to ease onboarding for remote teams”), or even
the pull-request process (e.g., “By first contributing some pull
requests and getting code reviews”). Only four respondents
were trained through their academic degree.

When considering the responsibilities they need to take to
prepare for the departure of a team member (Q7), 20 respon-
dents mentioned the importance to keep the documentation up-
dated (e.g., “We simply try to ensure that all developments are
adequately documented at the time, to help the understanding
of future developers”). Interestingly, 8 respondents mentioned
that this never happened, which is partially because they are
working on a small or solo team (e.g., “No one has departed
yet (or joined...)”). Other respondents mentioned the need to



train other, to push code, or to add tests.

Of those projects run by teams by teams of two or more
people, 35 out of 41 specifically called attention to the role
played by juniors in developing their software. 20 of these
described them as being responsible for developing specific,
non-core features of the software; projects that followed this
pattern offered up explanations such as “[juniors] — by
necessity — start with smaller peripheral bugs and features.
Core development requires a lot of experience and knowl-
edge.” Another twelve projects, however, cast juniors as being
developers of core infrastructure, typically for the reasoning
that senior members “cannot afford to put much time into
development”.

Meanwhile, 24 of the 41 team projects emphasize the role
of seniors in development. 8 of these said seniors developed
the core of the software and 4 the periphery. Those that did
so often emphasized the need for experience in development,
insofar as “the more education a team member has (software
development life-cycle, good coding practices, etc.), the better
they are at seeing ‘big picture’ development tasks [...] these
people often lead development”. However, in contrast to this,
ten respondents characterized seniors as being visionaries first
and developers second. In this view, the role of seniors is to
“coordinate activities”, “drive the direction of the project”,
“guide the conceptual development”, and to provide the “the-
oretical details”.

Lastly, only 9 out of the 72 projects gave recognition to
thirdparty contributors. Among these projects, the typical
view was that while thirdparties “contribute seldomly”, they
were also a common sources of bug fixes, a finding echoed
in our findings from RQ4. Likewise, these contributors were
also responsible for “[submitting] small patches to make [a]
tool better meet their own niche use cases”.

V. DISCUSSION

We have summarized the major findings in Table and
now consider the potential implications of our work.

Training. As a group, juniors have long been the subject
of science public policy literature. Novice researchers are
“canaries in the mine” for the health of the scientific enterprise,
as it is during this period that they are meant to learn the values
and skills needed to participate fully as scientists [33]]. How-
ever, while software development is an increasingly important
skill, the amount of direct experience they acquire may be
limited by competing demands in their academic careers (see
RQ1). This brings into focus a number of different topics
regarding software sustainability (e.g., the importance of good
practices such as code reviews) as well as educational policies
(e.g. the need for more formal software development training
in STEM curricula).

Building Communities. Much has been written about the
value of openness in science and the need for community
support of scientific software. As we noted in section [[II-C]
40% of contributors stay on for only a day. Our analysis
suggests that many of these may be thirdparty users who have
a formal background in a domain relevant to the project; even

TABLE V: A summary with descriptions of typical contribu-
tors, based on the findings in this work.

Contributor Findings

Seniors e Are often active on a project for four or more
years.

e Make the majority of contributions to a typical
project (average 50%). They create the most files
and touch the most code.

e Are most often responsible for forward engineer-
ing activities, development of the core of the
software, and infrastructure tasks.

e Provide guidance and visionary leadership to ju-

nior contributors, especially when they do not

have the time or resources to work on the code
themselves.

Are active for no more than 2 years. Roughly

25%-35% of their time is spent on software

development.

e Make up the majority of team members.

e Perform many of the same development activities
as seniors, and, collectively, generate 42% of
commit activity on average.

e Are most likely to develop peripheral, non-core
features of the software.

Juniors .

Third Parties e Are active for only one day.

e Have a background in the domain of the project
and an interest in using the software.

e Make only a handful of commits. These commits
are most likely to be bug fixes.

though these users only be involved for a short time, they can
still make valuable contributions such as fixing bugs. However,
despite the widespread presence of short-term committers in
the population and thirdparty contributors being present in all
but one of the projects in our sample, only 12% of respondents
in our companion survey mentioned these contributors. Based
on this, we believe that better community policies could help
attract these contributors, such as providing guides for new
contributors and explicitly giving credit to these users.

Supporting Sustainability. Scientific software projects are
known for being long-lived and under constant pressure to
keep pace with scientific advances. It is common for senior
project members to provide visionary leadership to guide that
process, but how this translated to software construction was
unclear. Our findings place seniors in a primary role as
core developers who are most likely responsible for forward
engineering and infrastructure tasks. Our findings suggest
directions for future research, such as how research priorities
generate software development tasks and when and how those
tasks are delegated. A more complete understanding of this
phenomenon would help software engineers develop better
tools and techniques to support that effort.

VI. THREATS TO VALIDITY

First, not all members of a project show up as contributors
to the repository; for example, senior staff may offer guidance
and support while leaving the actual implementation work to
others. Second, people who stop contributing code may still be
part the project. This is frequently the case for graduate student
contributors, who may refocus on completing coursework or
a thesis towards the end of their tenure. Third, team websites
are not always up-to-date, and not all contributors are given



explicit recognition for their work; in one case, an undergradu-
ate student was uncredited on a project site, but a subsequent
web search uncovered a university press release detailing a
research grant that was awarded for them to do specific work
on the project in question. Finally, not all contributors are
project members; as with most open-source software projects,
open-source scientific software attracts third-party contribu-
tors, typically senior researchers who benefit from using the
software.

Coding individuals using our approach means addressing
several potential ambiguities. First, on a few occasions, a
subject may have belonged to different categories at different
times (e.g., a staff member starting off as a postdoc). When
this occurred, we labeled them according to the role in which
they made the majority of their commits. Second, for large
research institutions (e.g., national labs), a software project
may receive contributions from people nominally part of the
same organization, but unaffiliated with the research team;
we resolved this by treating those contributors as thirdparty
contributors.

The commit analysis performed to answer RQ4 was an au-
tomated process which, when applied to a large-scale number
of commits, can silently yield false-positives (i.e., commits that
were unable to be categorized), since commit messages might
lack semantical sense [34] or are even empty [35] (i.e., zero
words). To mitigate such bias, we conducted a manual analysis
over a representative sample of 378 commits (confidence
level of 95% with an interval of +5%). We observed a low
number of uncategorized commits. Although uncategorized
commits still exist, we believe this approach is the fairest
way to categorize the commit intention because, since we are
dealing with scientific software projects, the domain of our
studied projects is highly specific and complex. Therefore, any
other attempt to categorize commits using our own domain
experience would introduce even more bias.

Lastly, one could argue that this study does not provide
a novel contribution, e.g., “obviously graduate students are
largely responsible for adding new features”. However, such
common-sense assumptions are often not backed up by em-
pirical evidence. This paper piles such evidence and, more
importantly, quantifies the phenomenon; even though some
perceptions are confirmed (e.g., “gradstudents stay longer
than postdocs and undergraduates”), other are uncovered
(e.g., “thirdparty members survive only one day on average”).

VII. RELATED WORK

Studies on scientific software development. Turk [6] presents
techniques for encouraging community engagement with sci-
entific software in the astrophysics community, arguing that
attracting thirdparty contributors requires intentional actions
designed to encourage their participation. Likewise, Bangherth
and Heister [13] outlines the practices of successful open-
source scientific software libraries, which includes a discus-
sion of the value proposition behind open-sourcing software
primarily written by juniors. Sletholt et al. [36] performs a case
study of agile development practices among scientific software

projects. Howison and Hersleb [8], a qualitative study of the
incentives for creating and maintaining scientific software,
identifies the general breakdown of contributors to projects
that they study; however, both the focus and methods used in
that work differ from ours, as they are not concerned with the
specifics of how different people contribute to the software de-
velopment. Finally, Storer [37] provides an excellent survey of
the state of software engineering practice within the scientific
community. Our work shares the same motivations as others,
but, to our knowledge, is the first to tackle this subject from
a software repository mining perspective.

Studies on roles of contributors in open source projects.
The study of core developers, i.e., developers that play an
essential role in developing the system architecture and form-
ing the general leadership structure, in open source projects
is a fruitful research area [38], [39], [40]. Core developers
are well-known from being active contributors. A general rule
of thumb suggests that contributors with more than 80% of
the overall contributions are considered core developers [31]],
[41]. Indeed, for some projects, this number is even higher.
Recent work indicates that several well-known, active open
source projects rely on 1-2 core developers to drive most of
their maintenance and evolution tasks [42]. On the periphery
side, research indicates that peripheral developers accounts for
more than 90% of the contributors of a project [31]]. Moreover,
several authors have acknowledged the existence and the
growth of casual contributors (i.e., developers that contribute
just once) [43l], [32]], [44]. Here we enriched the understanding
of core and peripheral developers. We also introduced the
notion of third-party contributors, which share some of the
behaviors commonly observed in peripheral developers (e.g.,
they have a short term relationship with the project, and most
of their contributions are intended to fix bugs).

VIII. CONCLUSION

Scientific software projects are critical to the advancement
of the scientific enterprise, and software engineering research
can directly help those efforts through tailored tools, tech-
niques, and practices. However, there has historically been a
lack of hard data on who contributes to scientific software
and how they behave. In this work, we mined logs from seven
non-trivial open source scientific software projects in order to
provide answers to these questions. Among our findings, we
found that while senior researchers perform the lion’s share
of the work in many projects, junior researchers are often
on the frontlines driving the software development. We also
considered the habits of thirdparty contributors who, while
often operating at the periphery of projects, have a valuable
role to play in fixing and improving code.

For future work, we plan to conduct ethnographic studies
of scientific software projects to better understand topics such
as feature creation and bug fixing. We also plan to study
how scientific software projects compare with conventional
projects.
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IX. APPENDIX

TABLE VI: Addenda to File Extensions used in Vasilescu et

al.[30]

Category  Addenda

Doc "ox\.md"

Code ".x\.pas((\.swp)?) ("2)",
"oxN.pxd ((\.swp)?) (T2)",
".x\.ads((\.swp)?) (T?)",
".x\.adb ((\.swp)?) (72)",
".x\.bin"

Devdoc " x\.pdf",".xcitation.«",

".xlicense.x",".xdoxyfile.*",
"ox\.wiki", ".x\.tex",
".x\.bib",".x\.dox",".*xauthors"

Db "ox\.csv",".x\.xml",".x\.fa",
"ox\.xlsx",".x\.zip",".x\.h5",
".x\.bz2",".x\.tar(\.gz) 2",
"ox\.fg(\.gz)?",".x\.pts",
".x\.pdb",".x\.pqr",
".x\.vert",".x\.node",
".x\.edge",".x\.param(eters)?",
".+x\.phi0", ".x\.prototext (\.bve)?2",
".*\.pkl",".*\.pbs”

Build ".x\.build",".*dockerfile",
".x\.gradle"

Config ".ox\.vexproj ((\.filters)?) ("2)",
" x\.gpg",".x\.dsp",".x\.epf"

Img ".x\.graffle"

A. Questions Used in the Online Survey
1) Which of the following best describes you (select
all that apply)?
« Student (e.g. undergraduate or graduate student)
o Postdoc
o Professional
o Professor

2) If you are currently employed, which of the
following best describes your current employer?

+ Government

o University or college

o Business or industry

o Non-profit organization
o Other (please specify)

3) Please list the highest academic degree you have
received or that you are currently working toward.

o High school degree or equivalent
o Associate’s Degree

o Bachelor’s

e Master’s

o Doctorate

4) What is the subject of this degree?

5) How many people are on your team?

6) What and how do they contribute (e.g., adding
new features to the core of the project, conducting
research that feeds back into the project, writing tests,
fixing bugs, et cetera.)?

7) How does a new team member get trained to do
their job (e.g. they are self-taught)?

8) What (if anything) do you do to prepare for the
departure of a team member (e.g. we ask them to
document the undocumented parts of their code)?

9) What kinds of roles and responsibilities do differ-
ent people play in the development of your software?
In particular, consider the following groups: junior
researchers (undergraduates, graduate students, and
postdocs), senior researchers (seasoned staff), and
third party contributors.

10) Are there differences in what different people
provide your project? If so, please explain what (e.g.
juniors are responsible for small issues while seniors
drive the architecture and solve the main problems)?



