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ABSTRACT
The C Programming Language is known for being an effi-
cient language that can be compiled on almost any architec-
ture and operating system. However the absence of dynamic
safety checks and a relatively weak type system allows pro-
grammer oversights that are hard to spot. In this paper, we
present RTC, a runtime monitoring tool that instruments
unsafe code and monitors the program execution. RTC is
built on top of the ROSE compiler infrastructure. RTC finds
memory bugs and arithmetic overflows and underflows, and
run-time type violations. Most of the instrumentations are
directly added to the source file and only require a mini-
mal runtime system. As a result, the instrumented code
remains portable. In tests against known error detection
benchmarks, RTC found 98% of all memory related bugs
and had zero false positives. In performance tests conducted
with well known algorithms, such as binary search and MD5,
we determined that the unoptimized overhead rate is be-
tween a factor of 1.8 and a factor of 77 respectively.

1. INTRODUCTION
One major trend in computing is the continuing increase

in the complexity of software systems. Such an increase is
allowed by the expectation of increasingly powerful hard-
ware (faster processors, larger memory and disks) and the
increasing diversity of environments in which the software
runs. This increase in complexity is expensive; the National
Institute for Standards and Technology (NIST) estimated
that inadequate infrastructure for software testing costs the
US economy $22.2 billion annually [26].
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Many programming languages allow the use of unsafe pro-
gramming constructs in order to attain a high degree of
flexibility and performance. This makes the construction
of correct large-scale software difficult. Unsafe language
features allow programmer oversights to introduce software
flaws which can create security hazards that can compromise
an entire system. Eliminating these software flaws can be
addressed on many levels in the software engineering pro-
cess. Rigid coding standards, restricting the use of a large
language to a safer subset, peer review, and the use of static
or dynamic analysis tools are some means that can all reduce
the exposure to software flaws.

Analysis tools can be categorized by how they analyze
software. Static tools analyze software without running it.
They target source code (occasionally binary) to apply for-
mal analysis techniques such as dataflow analysis, abstract
interpretation, and model checking; such techniques often
use approximations to arrive at sound but imprecise con-
clusions about the behavior of programs. Dynamic analysis
tools find bugs by observing the behavior of running pro-
grams. This is typically accomplished by code instrumen-
tation (source or binary) or by replacing (built-in) library
functions (e.g., malloc and free) with custom implementa-
tions. Dynamic analysis operates with concrete values and is
not prone to combinatorial state explosion. The downside of
dynamic analysis tools is that monitoring running programs
impacts performance. The quality of the results depends on
the tests’ input data and covered program paths. Hybrid
analyses combine static and dynamic techniques. Hybrid
tools can improve performance by eliminating checks that
a static analyzer considers safe in all possible scenarios, or
they can improve test coverage by producing input values
that cover all possible paths.

The history of program analysis research now spans sev-
eral decades, and dozens of tools and techniques have pushed
the envelope on our ability to detect and correct bugs. How-
ever, in the area of dynamic analysis, certain fundamental
challenges remain, namely high overhead costs and lack of
portability. Neither of these challenges have gone unnoted,
but have been relatively low priority targets for researchers.



Severe overhead, in many respects, has been seen as the
cost of doing business, a burden that software developers
have been willing to tolerate. For dynamic analysis tools
that target binaries for instrumentation (the most popular
choice), high overhead costs are difficult to avoid. The most
efficient way to reduce overhead is to selectively reduce in-
strumentation where bugs are unlikely or are rendered im-
possible, but without access to high-level information (e.g.
type information) to guide the pruning process, this can be a
risky proposition. Meanwhile, the computing landscape has
been historically dominated by only a handful of operating
systems and varieties of architecture; meeting the portabil-
ity requirements of developers meant being able to operate
in two or three popular environments.

However, as we move towards a future where computing
pervades every aspect of our daily lives, these challenges
become more substantial and more must be done to ad-
dress them. The most visible signal of the shift to ubiq-
uitous computing has been the proliferation of smartphones
and the thriving ecosystem of services that interface with
them. However, the most influential transformations have
come from the progressive infiltration of embedded comput-
ing systems, from critical control devices in medical care and
avionics, to smart televisions and coffee machines. Many of
the most popular languages for development in these bur-
geoning environments are also the least safe (e.g. C and
C++), the improper use of which introduce vulnerabilities
that threaten reliability and security. At the same time,
burdensome overhead costs and portability limitations ren-
der in situ dynamic analysis impractical if not impossible.
The imperative is a simple one: adapt or die.

In this paper, we present RTC (Run-Time error check for
C programs), a dynamic analysis tool for C99 programs.
RTC instruments source code with safety checks and pro-
duces another C source file. The resulting source file is
portable and can be compiled on any platform and any com-
piler that can handle C99 and linked to a small runtime sys-
tem. Choosing to instrument source code instead of binary
code has a number of advantages. First, the tool is portable,
because the systems where the code is instrumented and the
system where the code runs can be different architectures.
The only requirement is that there is a C99 compiler avail-
able for the target system. Second, by instrumenting source
code, the tool processes the code as written by the program-
mer, and not some code that was generated and possibly
optimized by a compiler. Finally, we can choose to validate
only a single program module. For example, we may want
to only a single, commonly used library. In such cases, we
may want to instrument only that library and not the whole
application.

Currently, RTC supports C99 and a subset of sequential
C++. RTC implements three kinds of safety checks: Arith-
metic overflow/underflow, memory safety checks to find mem-
ory bugs on stack and heap, and run-time type-safety vio-
lations. The metadata is kept on the side using a locks and
keys approach. Arithmetic overflow/underflow and mem-
ory safety checks cover three of the most dangerous soft-
ware bugs [24]. We tested RTC on several runtime check-
ing benchmarks and on complete programs including grep,
crafty, and other C programs in the SPEC2000 benchmark
suite.

The paper presents the following contributions: (1) auto-
mated and portable source code instrumentation and moni-

toring for C99 programs; (2) lightweight runtime monitoring
implementation.

The paper is outlined as follows: §2 presents background
information and related work. §3 describes our implementa-
tion in detail, and §4 discusses how we tested our tool and
the obtained results. §5 summarizes the paper and discusses
possible future research directions.

2. BACKGROUND
In this section, we present earlier work on error checking,

and an overview of the ROSE source-to-source transforma-
tion system.

2.1 Related Work
Run-time error checking tools have been designed for a

variety of reasons, ranging from bug detection and security
to software verification.

SafeC [1] introduced the notion of using source code in-
strumentation to detect temporal and spatial memory er-
rors. CCured [18], Cyclone [10], and MSCC [28] are all
works derived from or inspired by SafeC. Of particular in-
terest to us is CCured, which introduced the notion of us-
ing lightweight, disjoint metadata facilities to cut down on
the massive overhead inherent in the approach taken by
SafeC. This idea inspired Hardbound [5], which attempts
to tackle the issue by giving hardware support for bounds
checking pointers and pointer management. A software-
based approach analogous to HardBound was explored in
SoftBound [17]. MemSafe [25] extends this idea by using
static analysis to prove memory accesses safe. ConSeq [29]
identifies code locations, such as assertions or reads of key
global variables. Then ConSeq extracts slices to determine
instructions that contribute to violations. Finally, ConSeq
uses dynamic analysis to generate valid, bug-free executions
of the program, and then see whether any legal deviations
from that execution could lead to the potential errors that
were revealed by the static analysis.

RTED [23] is a dynamic analysis tool developed at the
Lawrence Livermore National Laboratory. RTED is a first
proof of concept implementation for sequential C, a large
sequential subset of C++, and UPC[6], a parallel language
for the partitioned global address space model. RTED finds
temporal and spatial memory violations on stack and heap,
signature mismatch in declaration and definition, erroneous
library calls, and reads from uninitialized memory. RTED
statically inserts source code to monitor the execution. For
concurrent codes in UPC, RTED synchronizes shared mem-
ory accesses to force a deterministic execution. Consequently,
the runtime overhead of RTED is large (>100x). For the tar-
geted errors, the error detection tool achieved roughly 95%
coverage on Iowa State’s runtime error detection benchmark
suite [13].

Frama-C [12] is an optimized runtime memory monitor-
ing library that implements assertion checking, memory and
pointer safety checking as library. Frama-C is complemented
by E-ACSL which is a first-order logic annotation language.
The specifications can be translated to Frama-C runtime
checks.

Other verification tools are also available. Valgrind [20], a
framework for writing dynamic binary analyses tools. Val-
grind finds memory access violations, concurrency related
bugs, and others. It supports concurrency, but serializes
concurrent executions. IBM’s Rationale Purify [9] is mem-



ory debugger that instruments object code and tracks mem-
ory allocation and initializations. Parasoft’s Insure++ [22]
is a proprietary tool that instruments source and monitors
execution in threaded applications. CDSChecker [21] is a
stateless model checker for concurrent software written in
the C11 and C++11 programming languages.

Other parallel error checking tools are geared to find con-
currency bugs [2, 8, 15]. Some runtime error checking ap-
proaches require support built into hardware [4, 7, 14, 16,
30]. Probabilistic methods allow to deal with uncertainty
resulting from less frequent program observation [11].

Lastly, we note that [3] explored run-time type-checking in
C, by using binary instrumentation informed by debugging
information to perform fine-grained type-safety analysis.

2.2 The ROSE transformation system
ROSE, developed at the Lawrence Livermore National

Laboratory (LLNL), is a source-to-source translation infras-
tructure for multiple languages, including C/C++, Fortran
77/95/2003, Java, and UPC. ROSE also supports several
extensions to develop parallel programs, such as OpenMP
and CUDA. ROSE represents source code as abstract syntax
trees (AST). The ASTs are built in a uniform and consistent
way for all input languages. ROSE implements many spe-
cific analyses (e.g. pointer alias analysis) and makes them
available through an API. Users can write their own anal-
ysis by utilizing frameworks that ROSE provides. These
include attribute evaluation traversals, call graph analysis,
control flow graphs, class hierarchies, SSA representation,
and dataflow analysis. ROSE has been used for building
custom tools for static analysis, program optimization, ar-
bitrary program transformation, domain-specific optimiza-
tions, performance analysis, and cyber-security. ROSE can
regenerate include directives, which maintains the porta-
bility of original code.

3. IMPLEMENTATION
We shall attempt to provide an overview of the implemen-

tation of the RTC tool. First, RTC supplies the original C
source code to the ROSE compiler framework, which parses
the input to produce an internal intermediate representation
(IR), including a detailed abstract syntax tree (AST). The
IR is, in turn, provided to RTC. RTC makes a pass over
the AST to identify regions of code that require monitoring
(such as when memory is allocated or a pointer is returned
from a function call). Our tool then instruments the code
by decorating the AST. Finally, the AST is unparsed, yield-
ing the instrumented C source code. This code can then be
compiled, linked to RTC’s metadata libraries, and then ex-
ecuted. The monitoring infrastructure put in place during
the instrumentation phase allows us to probe the behavior
of the program at runtime to detect bugs. A diagram illus-
trating this process can be seen in Fig. 1.

The following subsections provide detailed descriptions of
each of the aforementioned steps.

3.1 Preprocessing
When RTC receives the AST from ROSE, the AST must

be preprocessed. The purpose of the preprocessing phase is
to make the AST more amenable to instrumentation while
preserving the semantics of the program. By requiring that
the AST be normalized first, we reduce the complexity of the
instrumentation process and ensure that instrumentation is

RTC

ROSE Parser

Preprocessing

Instrumentation

ROSE Unparser

Figure 1: The RTC approach.

consistently and correctly applied. The preprocessing step is
split up over many distinct functions, each of which queries
the AST to find and perform normalizing operations on se-
lect nodes of the AST. These transformations include the
following:

1. The termination conditions of for and while loops are
moved inside their associated blocks. This guarantees
that all for and while loops have similar structures.

2. Arrow expressions are converted to dot expressions.
This allows us to treat arrow and dot expressions in
the same fashion.

3. Structs defined within functions are moved out into
the global scope. Otherwise, the instrumentation func-
tions might overlook the struct definitions.

Once all has been laid bare, RTC performs a complete
traversal of the AST, composing a list of every node that
requires instrumentation. The resulting list is then passed
to the instrumentation phase.

3.2 Instrumentation
The purpose of the instrumentation phase is to guarantee

that every interaction with memory is guarded by appro-
priate calls to runtime monitoring functions, and that all
pointers are outfitted with metadata that allows us to track
when, where, and how they are used. At the same time,
the panoptical ideal can only be realized within certain con-
straints: we must apply the instrumentation consistently
and preserve the original behaviors of the program. The
preprocessing phase guarantees the first requirement, but
not the latter, which is the subject of this subsection. For
the purposes of demonstrating this process, we have taken
an abridged excerpt from version 1.0.1 of the OpenSSL li-
brary, containing the code responsible for the Heartbleed
bug which was first disclosed in April 2014. The exploit re-
lies on a spatial memory violation, and we shall demonstrate
how RTC instruments this code to expose the violation at
run-time.
The first objective of the instrumentation process is to ex-

pose all pointers so that their uses can be analyzed at run-
time. For each pointer, RTC maintains a metadata record



void process heartbeat(unsigned char ∗hbMessage) {
unsigned short hbtype;
unsigned int payload;
unsigned char∗ contents;
hbtype = hbMessage[0];
payload = (((unsigned int)(hbMessage[1]))<< 8)

| (((unsigned int)(hbMessage[2])));
hbMessage += 3;
contents = hbMessage;
if (hbtype == TLS1 HB REQUEST) {
unsigned char∗ response;
response = (unsigned char ∗) malloc(1 + 2 + payload + padding);
...
memcpy(response, pl, payload);
...

}
...

}

Figure 2: A simplified representation of the code
responsible for the Heartbleed bug

that is kept in a separate and disjoint data structure. Point-
ers are moved into structures that contain two fields: one
for the pointer and another to hold the stack address of that
pointer; the latter serves as an index to that pointer’s as-
sociated metadata. For every type of pointer in the input
program, RTC declares and defines a struct to hold pointers
of that type, as well as functions that handle the creation
of those structs. In the case of our example, RTC provides
structs for pointers to types unsigned char and void. An
assignment to a pointer variable is split into a declaration
and a call to a specialized assignment function that creates
an instance of the struct and assigns the variable. Opera-
tions that alter pointers are substituted with calls to spe-
cialized functions that perform these operations and move
the pointer into new wrapper structs; pointers are kept in
constant motion, donning whatever raiment is appropriate
for the present circumstance.

This system of pointer-wrapping structs also forms the
backbone for the runtime type-checking system, as it pro-
vides the opportunity to record the data type of the pointer.
This is done by mapping the stack address of the pointer to
a type history, a list of types associated with the pointer,
stored in chronological order. In practice, types are rep-
resented by special typeinfo nodes, which list essential de-
tails about the type, such as whether the type is a primitive
or an aggregate, the sizeof the type, and the base type
(if one exists). RTC determines what types are used in a
program statically, and injects declarations for each type-
info node into the global scope, as well as calls to metadata
library functions to instantiate the typeinfo nodes at run-
time. In this way, information about each type is computed
only once. This is an instance of the flyweight design pat-
tern: type histories consist of a sequence of pointers to these
typeinfo nodes, instead of having many redundant copies.
Type histories are retained until a pointer is deallocated.
This type history can be analyzed on demand for runtime
type safety violations, as we shall see in §3.

When a pointer is passed to a function, the associated
stack address is pushed onto a globally accessible stack pro-
vided by the metadata libraries. Upon entering the func-
tion, the address is popped from the stack so that it and the
pointer can be redressed in a new wrapper. By using an ex-
ternal stack, RTC avoids having to alter function signatures

Type History

Table

. . .

Table

Record

Metadata

Metadata

Struct

Local

Table

Lock

Scope

Figure 3: An overview of how RTC operates at run-
time. Pointers are shadowed by lightweight meta-
data structures that hold the stack address of the
pointer, used to index into the metadata record ta-
ble, scope lock table, and type history table. Not
shown is the metadata stack.

to make metadata information available across scopes. An
important consequence of this is that it is possible to call in-
strumented code from uninstrumented code without having
to make changes or adaptations due to syntactic mismatches
- crucial for testing purposes.

Once this has been done, RTC then inserts instrumen-
tation around code where pointers are used to check for
possible violations. As seen in Fig. 4, array accesses are
guarded by calls to a bounds checking function that ensures
that the access falls within the lower and upper bounds of
the array allocation. Checks are also placed around calls to
functions, malloc, free, and pthread_create, and other im-
portant library functions like memcpy. Calls to third party
library functions that return pointers are replaced with calls
to wrapper functions that handle the production of meta-
data information for the resulting pointers, as none is to
be provided. The behavior of the original program is never
altered by the addition of calls to the runtime monitoring
library.

At the conclusion of the instrumentation phase, the AST
is unparsed, giving us the instrumented source code file. Af-
ter compiling and linking the output with the metadata li-
braries, we are left with an executable which can be run.

3.3 Runtime Checking
The runtime monitoring framework of RTC is divided into

four components: the metadata reference stack, the meta-
data entry table, the scope lock table, and the type history
table. The function of these structures, depicted in Fig. 3,
is to help detect spatial and temporal errors in the use of
memory in the instrumented program. To check for spatial
errors, RTC uses the metadata gathered about the pointer
to determine whether its corresponding location falls within



void process heartbeat(unsigned char ∗hbMessage) {
CREATE MD ENTRY IF EXISTS(&hbMessage,GET FROM STACK(0));
unsigned short hbtype;
unsigned int payload;
unsigned char∗ contents;

ARRAY BOUNDS CHECK(&hbMessage,&hbMessage[0]);
hbtype = hbMessage[0];

ARRAY BOUNDS CHECK(&hbMessage,&hbMessage[1]);
ARRAY BOUNDS CHECK(&hbMessage,&hbMessage[2]);
payload = (((unsigned int)(hbMessage[1]))<< 8)

| (((unsigned int)(hbMessage[2])));
hbMessage += 3;

ASSIGN AND CREATE MD ENTRY(contents,hbMessage);

if (hbtype == TLS1 HB REQUEST) {
unsigned char∗ response;

ASSIGN AND CREATE MD ENTRY(response,
CAST UCHAR PTR(

MALLOC WRAPPER(1 + 2 + payload + padding)));
...

PUSH TO STACK(&response);
PUSH TO STACK(&contents);

MEMCPY WRAPPER(response, contents, payload);
...

}
...

}

Figure 4: The instrumented version of the pro-

cess_heartbeat function from Fig. 2

the lower and upper bounds of the memory allocation. If it
should stray, an error will result. Meanwhile, RTC uses a
“lock and key” approach to detect temporal memory errors.
Every scope in the program has a lock and key associated
with it. When a pointer is brought into existence in a given
scope, the values of the lock and key are written to that
pointer’s metadata entry, and a lock entry is created in a
separate data structure that attests that the pointer is valid
for use in that scope. When a pointer is freed, the lock entry
is removed, and the lock/key values in the pointer’s meta-
data are erased. To check for a temporal error in the use
of a pointer, the key value held in the pointer’s metadata is
compared with the key of the current scope’s lock. If there
is a mismatch between the actual and expected key values,
it means that the memory that is pointed to has been freed
and/or reallocated, and an error is thrown. At the end of the
execution of the program, RTC expects that all locks have
been relinquished, which means that if a call to malloc is not
matched with a corresponding call to free before the end of
the program, an error will be reported; in this regard, RTC
is more demanding of the programmer than the C memory
model.

Finally, we shall describe the runtime type-checking sys-
tem which RTC provides. As we noted previously, RTC is
capable of collecting type histories of pointers that can be
checked against to detect possible runtime type violations.
One important function of this system is to catch uses of
variables that have not been properly initialized, which can
be determined by checking flags associated with the type
history, a constant-time operation. Having a comprehensive
type history also allows RTC to detect latent type violations,
such as when non-void pointers are passed to functions as
void pointers, only to be recast on the other side as a type
that is incompatible with the original. To catch these errors,

RTC can audit a pointer’s type history, checking each type
in sequence to ensure type-correctness. Auditing the type
history is a linear-time operation, but in practice this does
not significantly add to RTC’s overhead; checking the whole
type history of a pointer is a rare occurrence, and type his-
tories tend to be short (usually no more than three or four
entries).

As an object lesson in how RTC exercises these powers, we
can look at the example program. The key issue is that the
process_heartbeat function relies on an implicit assumption,
that the length of the user’s message, contained in hbMessage

equals the reported length (stored in payload), and the pro-
grammer made no provisions to guard against the violation
of that assumption. If a malicious client overstates the size
of their message to the server (e.g. sending a 1 byte mes-
sage while claiming the message is 64 kilobytes in size), the
server’s call to memcpy will fill the buffer response with the
original 1 byte message, followed by 63980 bytes, taken from
the contents of memory outside the bounds of contents.
When we enter the function process_heartbeat, RTC calls

CREATE_MD_ENTRY_IF_EXISTS to check the stack address of the
input string hbMessage against the address stored on the
metadata stack. A metadata entry is created for the use
of the hbMessage pointer in the current scope. Likewise, a
separate metadata entry is created for the derived pointer
contents. Finally, a metadata entry is created for the output
buffer, response. When the program calls MEMCPY_WRAPPER,
the wrapper function accesses the metadata associated with
contents and response, to check that payload does not ex-
ceed the bounds of the allocation pointed to by contents.
Then and only then can the call to memcpy proceed. If mem-

cpy would read outside the bounds of contents, RTC raises
an error and halts the execution.

4. EVALUATION

4.1 Estimating overhead costs
We collected a handful of C implementations of common

algorithms to help give a sense of the overhead costs incurred
by RTC. All implementations were single thread. The fol-
lowing is a list of the algorithms that were tested:

1. Binary Search: C implementation of the binary search
algorithm. Searches a sorted array of elements in the
hopes of finding a target value.

2. DTW: Dynamic time warping algorithm. Takes two
input files containing numerical sequences and com-
putes a measure of similarity between them.

3. Heapsort: Sort a list according to the heapsort algo-
rithm. This is an in-place implementation.

4. MD5: A severely compromised cryptographic hash func-
tion.

5. Mergesort: Sort a list according to the mergesort al-
gorithm.

Each of these algorithms was tested with a reasonable size
of output and the execution times of the uninstrumented and
instrumented implementations was compared. The experi-
ments on an 8x AMD Opteron 6128 processor, running the
Debian 6.0.5 operating system, and all code was compiled
with version 4.4.5 of the GCC compiler with only default op-
timizations enabled. Each experiment was performed three
times, and the average of these results were recorded. The



Figure 5: Normalized execution times for a selection
of C implementations of algorithms instrumented
by RTC, Clang’s AddressSanitizer, and Valgrind’s
Memcheck.

results of these experiments can be seen in Fig. 5. For the
sake of comparison, we also provide results for Clang’s Ad-
dressSanitizer and Valgrind’s Memcheck which we discuss
in greater detail in subsection §4.3. These tools were chosen
because they are popular, well-supported, and offer similar
capabilities. We note that underflow and overflow detection
was disabled for RTC and use-after-return detection was dis-
abled for AddressSanitizer.

In the case of the binary search implementation, the bulk
of the overhead comes from the bounds check added to every
array access. For an input of N elements, binary search
will require at most ⌊log2(N) + 1⌋ iterations of the search,
which means that there will also be that many calls to the
array bounds checking function. A breakdown of the calls
made to the metadata libraries reveals that these checks
account for 97% of all calls. From this, we can estimate that
these operations are responsible almost all of the 77% extra
execution time in this case.

Next, comparing the results of the mergesort and heapsort
implementations can show us the cost incurred by RTC’s
pointer monitoring facilities. Both mergesort and heapsort
exhibit O(NlogN) worst case performance, and we can ex-
pect the worst case cost in overhead for every additional ele-
ment to be commensurate with this figure. As in the binary
search implementation, both the mergesort and heapsort op-
erations are dominated by array access operations in com-
parable measure, but that alone does not explain all of the
overhead costs. We note that the mergesort implementation
does use more memory than the heapsort implementation,
but the only difference this makes in terms of the cost of the
instrumentation is that an additional entry is made in the
metadata table for every new temporary array, a relatively
inexpensive operation. This is to say that the quantity of
memory that is allocated by a program does not directly af-
fect the overhead costs, only the extent to which that mem-
ory is used. However, we do note both implementations pass
pointers to the functions they call, and all operations involv-
ing pointers are mediated by specialized structs and calls to
the metadata library, and these can significantly add to the
overhead costs.

This then brings us to the MD5 and DTW cases, which
are representative of the kinds of real-world code that we are
targeting with RTC. In both cases, the original source codes
are awash with pointers, from calls to malloc, realloc, and
free, to pointer dereferencing and type casting operations.

Ensuring that all pointers are being used safely and correctly
is no small task.

4.2 Code Coverage
To assess the bug coverage of RTC, we opted to test our

tool against the Stonesoup test suite. Stonesoup refers to
a curated test suite for C and Java published by the NIST
in 2012, containing 460 cases dealing with issues of memory
corruption and null pointer dereference. Each test case is
well-documented, which means that we were able to instru-
ment RTC to see whether it could detect the specific bug
given in the description of the test case.

4.2.1 Palindrome Finder
One subcategory of the memory corruption test suite con-

sists of variants of a program that takes a palindromic num-
ber as input and computes the next palindromic number.
In each of these programs, a heap-based buffer overflow has
been placed into the code that can occur when reading in the
number to find the next palindrome. An attacker can pro-
vide input of a size larger than the intended maximum, and
use this to launch a buffer overflow attack. Out of the 15 test
cases, four of them used the X11 library to produce a GUI
for the user to provide input, and these were excluded from
consideration. Out of the remaining ten test cases, RTC suc-
ceeded at detecting bugs in nine. On the same test cases,
Valgrind’s Memcheck succeeded at detecting bugs in only
five out of the ten. Clang’s AddressSanitizer, meanwhile,
aborted execution on six of the ten cases, having detected a
segfault but being unable to explain why it occurred , and
failed to find any bugs in the remaining four.

4.2.2 Solitaire Cipher
Another subcategory of the memory corruption test suite

contains 20 variants of a solitaire encryption cipher program.
In each case, the program was modified to include a buffer
overflow vulnerability when reading in the key file that is
used to create the random seed for shuffling. Five of them
used the X11 library to handle user input, and these were ex-
cluded from consideration. Out the remaining 15 test cases,
RTC succeeded in finding bugs in 6 of them. RTC failed to
produce compilable code for the remaining cases, due to the
a mishandling of an unusual array declaration. This indi-
cates that more work is needed to ensure that RTC handles
all of the corner cases of the C language. For the sake of
comparison, Memcheck succeeded in finding bugs in 13 out
of the 15 cases. AddressSanitizer aborted on 5 cases (for the
same reason as in the palindrome tests), failed to detect any
bugs on 6 cases, and successfully detected bugs on 4 cases.

4.3 Comparison of RTC to similar tools
Now we shall compare and contrast RTC to two other

contemporary tools, Valgrind’s Memcheck and Clang’s Ad-
dressSanitizer. A summary of the points covered in this
subsection can be found in Table 1.

4.3.1 Target of instrumentation
Both RTC and AddressSanitizer target source code for in-

strumentation; Memcheck targets binaries. The advantage
for Memcheck is that it is completely language independent.
However, working from the binary rather than the original
source code means that type information is lost. One conse-
quence is that invalid memory is reported when observable



behavior is affected, but not when invalid memory is read.
The lack of type information demands this behavioral def-
inition, as compilers frequently emit load instructions for
padding memory (e.g. a short value in a struct is aligned on
word boundaries, and frequently compilers load the entire
word instead of the smaller short). RTC and AddressSani-
tizer, meanwhile, can instrument all pointer accesses, which
allows both tools to report uses of invalid memory when they
occur.

4.3.2 Use of shadow memory
Both Memcheck and AddressSanitizer track shadow allo-

cations of memory in order to determine when and where
those allocations are valid for use. Valgrind’s Memcheck
tracks the validity of heap allocations on a per bit level, that
is, one check bit for every bit of allocated memory. Clang’s
AddressSanitizer uses one bit of shadow memory per byte of
real memory. With both tools, whenever memory is freed,
that memory is marked as invalid for use and is rendered
inacessible. In contrast, RTC shadows pointers, rather than
allocations; the size of an allocation does not add to the
amount of shadow memory required to track its use.

On a 64-bit architecture, a local metadata struct requires
128 bits of memory: 64 to hold the pointer itself and another
64 to hold the stack address of the pointer. The metadata
entry, meanwhile, requires another 256 bits of memory: 128
for the lock and key associated with the scope of the pointer,
and 128 to record both the lower and upper bounds of the
allocation. Finally, an individual typetable entry consists
of a variable-length sequence of 64-bit pointers to typeinfo
nodes, and a pointer must have at least one type associated
with it; this brings us to a minimum of 448 bits of informa-
tion per pointer. Considering that the number of pointers
and the size of allocations can vary from one program to the
next, the relative size of RTC’s shadow memory footprint
can be difficult to estimate. However, on average, the num-
ber of pointers in use in a program at any one given time,
multiplied by 448, is smaller than the quantity of allocated
memory.

4.3.3 Overhead
On average, AddressSanitizer produces the lowest over-

head of the three tools, followed by RTC and then by Mem-
check. In practice, the actual overhead experienced depends
heavily on the qualities of the program being instrumented.
Because Memcheck requires very fine-grained monitoring, it
is heavily affected by the size and quantity of memory allo-
cations in addition to the volume of reads and writes from
and to those allocations. AddressSanitizer employs a sim-
ilar scheme but at one-eighth of the resolution, which, in
conjunction with information derived from the source code
(e.g. type information), reduces the costs associated with
monitoring. Because RTC foregoes direct monitoring, its
performance hinges upon the number of pointers used and
the number of interactions with them, which we noted in
our discussion of the findings seen on Fig. 5.

4.3.4 Bug detection capabilities
Unlike Memcheck but on par with AddressSanitizer, RTC

is capable of tracking uses of memory on both the stack and
the heap and has the ability to catch arithmetic underflow
and overflow errors. Compared to AddressSanitizer, RTC
offers the same features with the addition of support for

Mem-
check

Address-
Sanitizer

RTC

Target Binary
Source
Code

Source
Code

Ratio of shadow
memory to
real memory

1:1 1:8 N/A

Average Slowdown 22x[19] 2x[27] 1.8x-77x
Out-of-bounds
accesses
(stack, heap, global)

No (heap only) Yes Yes

Use of uninitialized
values

Yes Yes Yes

Invalid/double free Yes Yes Yes
Use-after-free Yes Yes Yes
Use-after-return No Yes Yes
Memory Leaks Yes Yes Yes
Arithmetic
Overflows/
Underflows

No Yes Yes

Table 1: Comparison of RTC to other contemporary
tools. Note that AddressSanitizer’s support for use-
after-return and memory leak detection are exper-
imental, and use-after return detection is disabled
by default.

run-time type-checking.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented RTC, a source code in-

strumentation tool that finds software flaws common when
using the C programming language. Our tool is capable of
handling real-world programs. In our tests, we have demon-
strated that RTC finds most bugs in available error detection
benchmarks suits. As RTC is built with a source-to-source
translation framework, we will integrate with static analyz-
ers that are capable of proving many of the checks safe,
allowing us to remove unnecessary safety checks. Our main
research direction will extend our tool towards concurrency
as permitted by the C11 and C14 programming languages.
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