
Contents lists available at ScienceDirect

Computer Languages, Systems & Structures

Computer Languages, Systems & Structures 47 (2017) 170–188
http://d
1477-84

n Corr
E-m
journal homepage: www.elsevier.com/locate/cl
Refinement of structural heuristics for model checking
of concurrent programs through data mining

Reed Milewicz n, Peter Pirkelbauer
University of Alabama at Birmingham, Birmingham, AL 35223, United States
a r t i c l e i n f o

Article history:
Received 4 December 2015
Received in revised form
19 May 2016
Accepted 10 June 2016
Available online 18 June 2016

Keywords:
Model checking
Structural heuristics
Data mining
x.doi.org/10.1016/j.cl.2016.06.001
24/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: rmmilewi@cis.uab.edu (R. Mile
a b s t r a c t

Detecting concurrency bugs in multi-threaded programs through model-checking is
complicated by the combinatorial explosion in the number of ways that different threads
can be interleaved to produce different combinations of behaviors. At the same time,
concurrency bugs tend to be limited in their scope and scale due to the way in which
concurrent programs are designed, and making visible the rules that govern the rela-
tionships between threads can help us to better identify which interleavings are worth
investigating. In this work, patterns of read–write sequences are mined from a single
execution of the target program to produce a quantitative, categorical model of thread
behaviors. This model is exploited by a novel structural heuristic. Experiments with a
proof-of-concept implementation, built using Java Pathfinder and WEKA, demonstrate
that this heuristic locates bugs faster and more reliably than a conventional counterpart.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

For the purposes of this work, we define a thread as a sequence of instruction blocks that are linked to one another by a
chain of continuations. A thread is the smallest unit of execution that can be handled independently by a scheduler, and
threads are presented here as a general-purpose solution for managing concurrency. A multi-threaded program executing
on a multi-core architecture consists of the birth, life, and dissolution of arbitrarily many threads operating in parallel across
a fixed number of cores. In the analyses of multi-threaded, concurrent programs, our task is to characterize interactions
between threads and other threads, and between threads and the execution environment. Meanwhile, concurrency bug is an
umbrella term for classes of bugs which arise as a consequence of improper synchronization between threads over the use
of shared resources, such as deadlocks, race conditions, and atomicity violations. Our goal is to detect concurrency bugs that
could interfere with the proper execution of a concurrent program through careful analysis.

Recent history is replete with high profile news stories of concurrency bugs causing dramatic and spectacular failures. One
especially powerful example, the Northeast blackout of 2003, a widespread blackout that left over 55 million people in the
Northeastern United States and Canada without power for days, was triggered by a sequence of unsynchronized writes to a
data structure in an alarm reporting system resulting in data corruption; locating the source of the bug required 8 weeks of
analysis of over several million lines of code. Meanwhile, on the development side, there is an abundance of both anecdotal
and empirical evidence that concurrency bugs are a fairly common and onerous occurrence. For example, a 2007 publication
based on an internal survey of the use of concurrent programming at Microsoft found that concurrency bugs were a frequent
wicz), pirkelbauer@uab.edu (P. Pirkelbauer).

www.sciencedirect.com/science/journal/14778424
www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2016.06.001
http://dx.doi.org/10.1016/j.cl.2016.06.001
http://dx.doi.org/10.1016/j.cl.2016.06.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.06.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.06.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2016.06.001&domain=pdf
mailto:rmmilewi@cis.uab.edu
mailto:pirkelbauer@uab.edu
http://dx.doi.org/10.1016/j.cl.2016.06.001
http://dx.doi.org/10.1016/j.cl.2016.06.001


R. Milewicz, P. Pirkelbauer / Computer Languages, Systems & Structures 47 (2017) 170–188 171
issue for developers [25]. 66% of survey participants (armed with an average of 10.48 years of programming experience)
reported having to deal with concurrency issues in their work. The majority of those participants reported spending time
debugging concurrent code at least once a month or more, and the majority of concurrency bugs were ranked as being very
severe, hard or very hard to reproduce, and multiple days (less than a week) were needed to find and correct them.

Many different tools and techniques exist to detect concurrency bugs. These include both automated techniques such as
static analysis, coverage testing, and execution capture/playback tools, as well as development strategies such as pair pro-
gramming, code inspection, and the use of rigorous code standards. In addition to these, model-checking has proven to be a
powerful and versatile approach for the task. The model checking problem can be summarized as such: given a state-
transition graph of a system and a specification, prove that the system conforms to or “models” that specification. A model-
checking engine automatically and exhaustively explores the state space of the system, and either verifies that all states satisfy
the constraints of the specification, or finds a counterexample by showing that it is possible to arrive at an invalid state, one
that violates the specification. The strengths of model-checking are that it can simultaneously verify arbitrarily many cor-
rectness properties in the course of its exploration, and that it can precisely identify the when, where, and how violations
occur. These qualities are especially important for the detection of concurrency bugs, which can come in many forms and may
only manifest themselves under very specific conditions. However, its strengths play into its key weakness: the state spaces of
multi-threaded, concurrent programs can be inconceivably vast due to the sheer number of different ways that individual
threads can be interleaved with one another. Finding ways to reduce and manage this combinatorial explosion remains an
active area of research; as an influential example, we direct readers to Flanagan et al. [22] which introduced the concept of
dynamic partial-order reduction (DPOR), and to Sistla et al. [47] which gives a comprehensive survey of symmetry reduction
techniques prior to the development of DPOR. In traditional model-checking, state space exploration is blind and undirected.
This is because the original focus of model-checking research was on total verification, and therefore all states must be
explored. In contrast, directed model checking, which this paper focuses on, explores states in an order determined by a
heuristic function, the assumption being that invalid states exist and an appropriate heuristic will help us flush them out
quickly so as to provide counterexamples. As noted by Bhadra et al. [3], directed model checking is a form of hybrid verification
that uses state space search as a platform for combining formal analysis with “informal” heuristics.

Those who investigate state space search heuristics, those who spend a great deal of time and energy developing and fine-
tuning them, savor a delicious irony: all reasonable heuristics perform just as well as any other on average. That is to say that
for any problem instance for which a particular heuristic provides optimal performance, we can contrive arbitrarily many
other problem instances for which another heuristic is better suited; a formal treatment of this issue can be found in the well-
known work by Wolpert and Macready [51] on the No Free Lunch Theorem (NFLT). The goal then is to identify which heuristic
(or combination of heuristics) will provide the best performance for a given problem instance or class of problem instances.
This has motivated deep investigations into general-purpose and highly parameterizable heuristics, meta-heuristics, and
meta–meta-heuristics which allow users to tailor existing approaches to novel problems. However, as is illustrated in Fig. 1,
every additional layer of optimization provides diminishing returns: each consecutive layer optimizes the parameters of the
last to refine the informationwe receive, adding a modicum of overhead and creating an even more sensitive parameterization
problem to solve. Furthermore, because our heuristics, the underlying source of our observations, are subject to the grav-
itational pull of the NFLT, we cannot reliably achieve the escape velocity needed to reach near-optimal resource consumption.

Then again, that zero-sum limit only applies if the distribution of programs with respect to errors is uniform; that is, it is
impossible to make assumptions that hold true for most programs. Empirical studies of concurrent programs show that this
position is overly conservative. Case in point, a 2008 comprehensive study of real-world concurrency bugs by Lu et al. [35]
Fig. 1. A visualization that summarizes the current state of the art of directed model checking.



R. Milewicz, P. Pirkelbauer / Computer Languages, Systems & Structures 47 (2017) 170–188172
suggests that while concurrency bugs are becoming more common, they are not increasing in severity. Among their
observations of concurrency bugs that occur in popular, large-scale programs, we would like to note the following:

� 96% of concurrency bugs involve only two threads.
� 66% of concurrency bugs involve concurrent accesses to only one variable.
� 92% of concurrency bugs involve no more than four memory accesses.
� 97% of non-deadlock concurrency bugs are either atomicity violations or order violations.
� 97% of deadlock concurrency bugs involve two threads circularly waiting for at most two resources.

In short, concurrent programs are getting bigger, but the scope and scale of bugs are staying the same. This may seem
mysterious at first, but it makes sense when we consider how threads are typically employed in programs. When threads
share resources, it is because they have overlapping responsibilities and interests; they often execute similar code and have
similar local states. It is possible for a program to put 100 threads to work on 100 completely different tasks, but more often
than not, those 100 threads are performing only a handful of distinct tasks. Applying the pigeonhole principle, we know that
past a certain point adding additional threads results in more of the same behaviors rather than novel ones. As such, the
overwhelming majority of concurrency bugs can be observed by examining a relatively small number of threads and
memory accesses. This observation is echoed by Mercer and Rungta [43], who demonstrated that the number, types, and
categories of threads that can cause an error are key determinants of the error distribution and density of a state space and
thus the difficulty of finding a bug.

If we have access to “special knowledge” about the program in question (or about concurrent programs in general), we
can short-cut regions of the state space that are unlikely to contain a concurrency violation. This suggests that combining
model checking with prior analysis of source code, byte code, execution traces, comments, documentation, and formal
specifications may yield insights that could greatly improve our performance. However, there are several challenges that
must be confronted with combining model checking with any other kind of analysis.

First, while prior analysis can elucidate the nature of potential bugs, translating that knowledge into a form that a heuristic
can use is non-trivial. For example, static analysis could suggest that two lines of code may cause a race condition when
interleaved, but that alone does not tell us how to reach a state where those lines of code are concurrently executed;
incorporating additional analyses into the model checking process introduces a new decision space with complicated trade-
offs. Second, the computational cost of the prior analysis must either be low enough to be offset by savings from the reduction
in the cost of the state space search, or the information must be reusable so as to amortize the costs. It is because of these
challenges that the hybridization of model checking with other analyses remains an under-explored area of research.

In this work, we explore both a general claim about solutions to these challenges as well as a specific claimwhich we test
by offering a proof-of-concept implementation. Our general claim is that by using techniques from data mining and machine
learning, we can construct cost-efficient “soft” analyses that extract from a modality of a program structural information
that can be mapped to the state space. Our specific claim is that framing the behaviors of threads and their relationships in a
categorical way, that is, by reasoning about their behaviors in aggregate, could help us to predict what combinations of
behaviors are likely to lead to invalid or erroneous states, allowing us to seek out those states more efficiently.

The paper presents the following contributions: (1) a lightweight technique for modeling functional similarities between
threads based on stochastic approximations of read/write behaviors; (2) a novel structural heuristic which leverages these models
to explore the state space of a concurrent programmore efficiently; (3) a mutation-based benchmark generation process for the fair
evaluation of heuristics. The paper is outlined as follows: Section 2 presents background information and related work. Section 3
describes our implementation in detail, and Section 4 discusses how we tested our heuristics and the obtained results. Section 5
discusses related work. Finally, Section 6 summarizes the paper and discusses possible future research directions.
2. Background

2.1. Structural Heuristics

Much work has been done on developing classes of heuristics that target particular kinds of bugs and violations. For a
given state, the heuristic measures the likelihood that that state will either contain a violation or lead us to a violation. Many
heuristics are designed to target specific kinds of concurrency bugs, such as deadlock detection heuristics. However, works
by researchers Groce and Visser [26,27] introduced the notion of a structural heuristic, which, instead of explicitly focusing
on particular bugs, aim to expose a variety of bugs by favoring states that are most revealing of the behavior of the program,
allowing the search algorithm to uncover bugs before exhausting the limits of memory. Structural heuristics are not
intended to remove the need for heuristics that are tailor-made for a particular program, but they do provide an alternative
when the nature of the bugs is unknown or several different classes of bugs may be present in the program.

For race condition detection, one especially effective heuristic developed by the authors is to favor paths through the state
space that maximize the interleaving of threads. This is to say that the search algorithm is directed to explore regions of the
state space in which threads are switched out as often as possible, which the authors claim exposes “the dependency of the
threads on precise ordering” [26]. To implement this heuristic, we keep a limited history of the threads that have been



R. Milewicz, P. Pirkelbauer / Computer Languages, Systems & Structures 47 (2017) 170–188 173
scheduled to run. When a new thread is scheduled, we append that information to the history, and make a pass over the
history; the heuristic value is computed by counting the number of times that the current thread has been scheduled and the
number of other live threads that could be scheduled instead – the higher the value, the less “interesting” the path is to the
search algorithm. If the search algorithm is given a choice between two or more states to explore next, it will explore the state
where the heuristic value is lowest. We will refer to this heuristic as hTI, and the following is a formal definition for reference:

hTIðpath; limitÞ ¼
Xpath:length

i ¼ path:length� limit

path:length�NaliveThreads if path:getðiÞ:tid¼ path:getðpath:length�1Þ:tid
0 otherwise

�
ð1Þ

Because hTI maximizes the number of different interleavings of threads that we explore, it excels at uncovering bugs
resulting from race conditions; intuitively, having as many live threads interacting in as many different ways as possible
increases the chance that one thread may harmfully interfere with the operations of another. However, this heuristic can
struggle at high thread counts because we are overwhelmed by an exponentially large number of equally “interesting”
interleavings and only a small fraction of these will actually lead us to a bug. This indicates that we may be able to improve
the performance of this heuristic by providing additional information that it can use to help break ties. We would like to
take this opportunity to stress two points. First, that this problem is not unique to hTI: it is common for heuristics that are
general-purpose do so at the expense of discriminatory power. Second, that hTI performs just as well as any other heuristic
on average, which means that it is as just good of a place to begin our exploration as any other; there is an analogous
discussion to be had for any other such heuristic.

It is here that we consider a thought experiment to evaluate the effectiveness of hTI in light of the empirical evidence we
presented earlier regarding the nature of concurrency bugs. Assume that we have an implementation of a producer–con-
sumer queue that exhibits a concurrency bug, with Nproducers threads producing values and Nconsumers threads consuming
them ðð threads

�� ��Þ ¼NconsumersþNproducersÞ. Using A� search guided by hTI with a history limit of L, we conduct a search of the

state space. Assuming Lo threads
�� ��, there are up to threads

�� ��L many possible histories of length L, and of these, there exist

threads
�� ���ð threads

�� ���1ÞL�1 histories where the most recent thread has been scheduled only once (i.e. where
hTIðpath; LÞ ¼ 0). For a fixed L, we know that

lim
threadsk k-1

threads
�� ���ð threads

�� ���1ÞL�1

threads
�� ��L ¼ 1 ð2Þ

which explains why we often observe a proliferation of the number of optimally interesting states as the count of threads
increases. Intuitively, we can compensate by increasing the size of L, thereby increasing the amount of information available
to the heuristic to better distinguish between alternatives. However, increasing L has the effect of deepening and narrowing
the search, which can cause us to miss buggy states at shallower depths; in our experience, even modest increases in L (e.g.
8–64) had the effect of slowing performance by a factor of up to 100.

Next, we know that 96% concurrency bugs involve only two threads, and of these bugs, there are three possible flavors:
producer–producer, producer–consumer, and consumer–consumer. If we assume that these categories of bugs are equally
likely to occur, then we arrive at two mutually exclusive hypotheses. The first hypothesis is that the bug occurs between
threads executing different codes (producer–consumer bugs). If so, the best policy is to favor paths that treat consumers and
producers equitably. This means exploring states whose recent histories are neither producer-dominated nor consumer-
dominated, maximizing our chances of observing a producer–consumer violation. The second hypothesis is that the bug
occurs between threads executing the same code (producer–producer or consumer–consumer bugs). If that were true, then
we would want to favor paths that tightly interleaved producers with other producers and consumers with other
Fig. 2. A visualization of two partial paths through the state space of a program simulating operations on a producer–consumer queue. States where a
producer is running are colored blue and states where a consumer is running are colored red. The path on the left schedules producers closely together
with other producers and consumers with other consumers, and the path on the right aggressively interleaves producers and consumers. The heuristic
values of these paths are everywhere equal according to the hTI heuristic, but by our hypotheses, one of these paths is more likely to expose a violation than
another. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)



R. Milewicz, P. Pirkelbauer / Computer Languages, Systems & Structures 47 (2017) 170–188174
consumers. As noted in Fig. 2, the hTI heuristic cannot make these distinctions. This means that the heuristic can lead us to
expend time and space following paths that are less likely to lead to a bug.

However, if we intend to make this information available for use, we must first impose an automatic mapping of threads
to categories (e.g. producer, consumer) that we can exploit, and this takes the form of a clustering task.

2.2. Cluster analysis

Cluster analysis is the task of dividing a set of entities into disjoint subsets (clusters) such that entities within the same
cluster are similar, and entities in different clusters are dissimilar (according to some measure). It is difficult to be more
precise than this because the term applies to many different algorithms used in many different disciplines.

We begin by considering a clustering scheme as a manual process carried out by the programmer. If we take similarity to
mean correspondence with the abstract design of the program, then the programmer, armed with full knowledge of the
semantics of the program, labels each thread in the program according to their intended role or function. This partitioning
can be used by heuristics to enrich their observations as we described in the previous subsection.

Entrusting this task to the programmer is an intuitive choice. The design of the program, made visible to us through the
source code, is undergirded by what Dètienne [14] refers to as a “typology of schemas”, a mental framework for under-
standing the program that is difficult to automate. Despite this, we argue that automated inference of these categorizations
is necessary. First, bugs are almost always the result of mismatches between the intended and actual semantics of the
program, which means that the programmer may not have sufficient knowledge to accurately characterize the actual
behavior of threads; here we refer the reader to Welles and Kodar [50] who argue that the original intent of the designer is
both inaccessible and, in a practical sense, irrelevant. Second, the behavior of threads may be highly parameterized by input
values, requiring careful analysis that can be burdensome on the programmer; we call to mind Engler and Musuvathi [19], a
report on the use of model-checkers that found that for the sake of scalability and ease of use, a model-checker should
“require as little input, annotations, and guidance as possible”.

Fortunately, there has been ongoing research in the fields of data mining and machine learning with regard to automated
clustering techniques (see [32] for a comprehensive introduction to the topic). Clustering techniques have been extensively
applied to problems in software analysis using features extracted from source codes, binaries, execution traces, and formal
specifications. Popular applications include program comprehension [37,33,18] and anomaly detection and analysis [23,31,44,15].
3. Implementation

The central hypothesis of this work is that augmenting structural heuristics with knowledge of the semantics of threads
and their interactions can help us identify concurrency bugs more quickly and at reduced cost. It is imperative that we
qualify this hypothesis, because the phrase “knowledge of the semantics” is nebulous and belies the complexity of the task.
We use the term semantics broadly to refer to the code that threads execute, the values that they read and write, and the
way in which threads interact with one another insofar as that affects the first two items. By knowledge, we mean struc-
tured data, correlated with the semantics, that can be put to use by the heuristic. There are many design decisions that must
be made as to how the semantics should be quantified, how the knowledge should be structured, and how the heuristics
should exploit that knowledge, and it is beyond the scope of this paper to explore all of the possible combinations. What we
present here is a proof-of-concept implementation that we have realized using Java Pathfinder [49], a stateful model-
checker, and WEKA [28], a machine learning library developed at the University of Waikato.

3.1. Data collection

In this work, our approach uses read–write patterns of threads, extracted from execution traces of the program, to dis-
criminate between classes of threads. Read–write sequences provide an abundance of context-free observations on which to
build models; reads and writes are the most common and essential of operations, and their order and frequency reflect the
code that a thread executes as well as hinting at the influence of other threads. We can represent the read–write behaviors of a
thread over one or more executions by using a Markov chain model. A Markov chain is a discrete-time stochastic process that
describes how a random variable changes over time, its possible values belonging to a countable set known as the state space
of the chain. A Markov chain obeys the Markov property, that is, that the probability distribution of the state of the variable at
time tþ1 depends only on the state of variable at time t; it is for this reason that Markov processes are called “memoryless”
processes. For a thread Ti, we define Xi;t to be a random variable that represents the operation performed by Ti at time t. We
use the term “time” here loosely: there can be many intervening operations aside from loads and stores which we choose not
to observe, and different threads are in no way ordered with respect to one another by time. The range of values that Xi;t can
take is the state space S¼ fread;writeg, and the probability distribution can be described by the following transition matrixMi:

Pread;read Pread;write

Pwrite;read Pwrite;write

" #
ð3Þ



R. Milewicz, P. Pirkelbauer / Computer Languages, Systems & Structures 47 (2017) 170–188 175
where Pread;read is the probability that Ti will read again after reading and so on. The initial probability distribution (describing
Xi;t) is Qi ¼ qread qwrite

� �
, which dictate the probability that Ti will read first or write first. Given an execution trace, we can

compute Mi and Qi for the thread Ti in the following way:

Pread;read ¼
Nread;read

Nread;writeþNread;read
qread ¼

Nread

NreadþNwrite
ð4Þ

where Nread;read and Nread;write are respectively the number of times that a read followed another read and the number of times
that a read followed a write, and Nread and Nwrite are respectively the number of times that a read occurred in the trace and the
number of times that a write occurred in the trace. The accuracy of this model can be improved by incorporating additional
execution traces, which can be accomplished by computing the transition matrix and initial distribution for a thread in each
trace and then averaging the results. In practice, we find that we reach the point of diminishing returns after just one trace,
and therefore a single execution provides ample data on which to construct these models. The reason is that our Markov
chains offer a very low resolution representation of thread behaviors, and therefore less data is needed. This resolution can be
increased by increasing the order of the chain model, that is, tracking operations at the level of subsequences rather than
individual operations (e.g. Pðread;readÞ;ðread;writeÞ). However, doing so invites the noise that we mentioned earlier, and we would
require much more data in order to construct accurate models.

3.2. Clustering

Once we have our thread behavior data, a collection of Markov chains, we can then begin the process of categorizing threads
according to their behaviors. For this, we use k-means clustering. The k-means clustering technique attempts to partition a set of
tuples o0…on, called observations or instances, into 0okrn clusters so as to minimize the within-cluster sum of squares
(WCSS), which is to say that it minimizes the squared Euclidean distance between each instance within each cluster. This kmust
be chosen by the user, and we discuss the consequences of this in the results section. For a thread Ti, we map the chain ðMi;QiÞ to
a 4-dimensional vector oi ¼ ðPread;read; Pread;write; Pwrite;read; Pwrite;writeÞ (note that we opt to discard the initial distribution). To per-
form k-means clustering, we use Lloyd's algorithm, which iteratively refines cluster assignments until convergence is reached
[34]. For the sake of brevity, we will not elaborate on the details of the algorithm here. The end result of this process is that we
have a mapping from thread identifiers to cluster assignments of the form fTi ¼ vj: TiA identifiers;0ovjrkg.

3.3. Developing heuristics

Finally, once we have the partitioning of threads, our model of the underlying structure of the program, we can consider
the implementation of heuristics that exploit that structure. As a guiding image, we can envision the k-means cluster
assignments as an improper graph coloring of the state space, where each state is colored according to the cluster to which the
currently executing thread belongs. The state space now has not only shape and form but also complex visual textures,
providing additional criteria that we can use to compare partial paths. Intuitively, differences in cluster assignments (colorings)
reflect differences in code and values. Exploring cluster-diverse (highly chromatic) paths favors behaviors that occur between
different classes of threads, and exploring non-cluster-diverse (weakly chromatic) paths favors behaviors that occur between
threads of the same class. With this in mind, we arrive at our first heuristic, hCI, which we formally define as follows:

hCIðpath; limitÞ ¼
Xpath:length

i ¼ path:length� limit

path:length�NaliveClusters if getClusterðpath:getðiÞ:tidÞ ¼ getClusterðpath:getðpath:length�1Þ:tidÞ
0 otherwise

�

ð5Þ

Threads that could be scheduled next are weighted according to the number of times that that thread's cluster has been
scheduled in the recent history and the number of clusters that could be scheduled. This heuristic tends to perform poorly on its
own, because it only encourages interleaving threads to the extent that all live clusters are represented in the recent history (i.e.
at least k threads); any two threads from the same cluster are given the same weight, regardless of how often they have been
scheduled in the past. This motivates us to incorporate both hTI and hCI into a single heuristic, which we will refer to as hTICI:

hTICIðpath; limitÞ ¼ hTIðpath; limitÞ7hCIðpath; limitÞ ð6Þ

By plus-or-minus hCI, we mean “choose one”. Our argument is that the value of hCI is correlated with the distance to a
buggy state involving a race condition (if one exists), but the mutually exclusive hypotheses we made in Section 2 imply that
we do not know the sign of the correlation. That is, we claim that at least one version of the heuristic (which we will refer to
as hþ

TICI and h�
TICI) will almost always find bugs faster than hTI alone, although it is possible that one version may do worse.

This is intentional. The information provided by the cluster analysis is purely structural, but the heuristic is phrased such
that we can incorporate information from additional analyses, which we will discuss in greater detail in Section 4. A diagram
that summarizes the process that has been described in this section can be seen in Fig. 3.



Fig. 3. An overview of the process described in Section 3. Executed traces are mined for read–write sequences belonging to each thread, with the results
being used to train Markov chain models. K-means clustering is performed on the transition matrices of these models, providing a partitioning that informs
the heuristic search.

R. Milewicz, P. Pirkelbauer / Computer Languages, Systems & Structures 47 (2017) 170–188176
4. Evaluation

To determine whether or not our behavior model and our heuristic are worthwhile, there are two criteria which they must
satisfy. The first is that the automatically inferred behavior model agrees with and produces results of comparable quality to a
manually constructed behavior model. The second is that our proposed heuristic must perform better than the state-of-the-art
approach which does not take advantage of our behavior model. If our approach agrees with the manual approach but the
performance results are poor, then either our model does not provide any meaningful benefit or our heuristics are inadequate,
and if we have poor agreement but good performance, then our model works but our understanding of it is incorrect. We want
to meet both of these requirements, and the experiments in this section are designed to test this.

4.1. Agreement and quality of cluster analysis

According to our high-level, abstract knowledge, each benchmark consists of N threads, one master thread and N�1
workers, and M classes of tasks (usually two) distributed evenly over the worker threads. We can partition the threads into
categories that correspond with their role in the program, a clustering according to the designer's intent. For a given
benchmark we can compute two clusterings, one using our manual method and the other using k-means clustering on
Markov chain models. Due to the nature of the data on which we perform clustering, it is possible to produce mis-
classifications which can cause our automated approach to deviate from the manual one. For example, given a program
consisting of multiple threads repeatedly attempting to perform a single compare-and-swap operation on the same memory
location, the lone thread who takes the longest to succeed may be placed into a separate cluster. In practice, this is unlikely
to happen for larger programs, and in our experiments, we found that occasional misclassifications did not significantly alter
performance.

Our first task is to test whether or not the automated approach agrees with the manual approach, that is, that the two,
despite being derived from different data, produce significantly similar results. For this, we compute their Rand index [41], a
commonly used measure of cluster similarity. The Rand index compares the number of cluster assignments on which the
two approaches agree to the number on which they disagree, and produces a real value from 0 to 1, with 0 indicating no
agreement and 1 meaning the two agree perfectly.

Our second task is to compare the quality of the clusterings accordingly based on the data that was clustered – in
machine learning and data mining parlance this is known as internal evaluation. This is complicated by the fact that we do
not have access to the data on which the manual approach was performed, the source code being separate from the psy-
chological schemas used to interpret that source code. However, we do have access to the Markov chain representation, and
if our understanding is correct, then agreement of the two approaches indicates that the two underlying sources of data
strongly correlate with one another. To measure the quality of the clusterings, we compute their homogeneity (H) and
separation (S). Homogeneity is the average distance between each instance and the center (average) of the cluster that it
belongs to, and separation is the weighted average distance between cluster centers. Ideally, H should be as small as
possible, and S should be as large as possible.

To gather this data, experiments were performed on a selection of Java benchmarks belonging to the Software-Artifact
Infrastructure Repository (SIR) of the University of Nebraska, which provides a wide variety of software objects written in
Java, C, C# and Cþþ [16]. Of the Java benchmarks, we selected a subset of 37 which contains documented concurrency bugs,
and within that category, we present results on 7 of those benchmarks. All of the benchmarks exhibit a division of labor
between threads, arrangements which are amenable to our clustering strategy. The following is a summary of those
benchmarks:

� boundedbuffer: An implementation of a bounded buffer that contains a deadlock based on a common bug pattern
reported by Etyani and Ur [20].

� clean: Two groups of threads perform tasks that require each to wait on the signal of the other in order to proceed, which
can result in a deadlock, based on a bug pattern reported in Farchi et al. [21].

� losenotify: One group of threads depends upon a notification from another in order to progress in such a way that invites
deadlock. This benchmark, like clean, is based on work by Farchi et al. [21].



R. Milewicz, P. Pirkelbauer / Computer Languages, Systems & Structures 47 (2017) 170–188 177
� nestedmonitor: A non-deterministic implementation of a bounded buffer that uses semaphores to negotiate access to
the data structure. Deadlock can occur due to nested monitor calls. This particular benchmark was based on an example
provided in Kramer and Magee [36].

� readerswriters: This benchmark showcases a race condition in which threads may begin writing while other threads are
reading in an unsynchronized way, producing a race condition. This benchmark is based on the work of Pasareanu et al.
[38].

� reorder: This benchmark demonstrates an atomicity violation, which is reported as a runtime exception, occurring
between threads which read from two memory locations and threads which write to those memory locations. The
benchmark is based on work by Farchi et al. [21].

� twostage: This benchmark involves a two stage access bug in which one group of threads attempts to write to two
different memory locations, separately acquiring and releasing a lock on each, while another group of threads attempts to
read from them producing a race condition. This kind of race condition is often observed with database transactions
when a client fails to lock multiple relevant datasets simultaneously. The benchmark is based onwork by Farchi et al. [21].

� wronglock: Two different groups of threads attempt to acquire locks to access data, but one group of threads consistently
acquires the wrong locks, which results in a runtime exception. The benchmark is also based on work by Farchi et al. [21].

� lfqueue: A custom implementation of an unbounded lock-free queue. In the dequeue method, an atomic compare-and-
set operation on the head of the queue has been replaced with an atomic load and atomic store, which can cause a thread
performing a dequeue to enter into a race condition with any other thread also reading or writing to the location of
the head.

� prioritytree: An implementation of a tree-based priority queue based on an implementation given in The Art of
Multiprocessor Programming by Herlihy and Shavit [29]. In the original version, each node maintains a bounded, atomic
counter that indicates the priority of the value it holds. In our version, the counter is made non-atomic, which invites race
conditions.
4.2. Benchmark generation and performance tests

Our ultimate goal is to provide heuristics which find bugs in less time and with smaller memory requirements so that
programmers can analyze their concurrent code more easily and frequently. Given a set of representative benchmarks, we
can compare the performance of each heuristic by measuring the execution time and space needed to reach at least one
state containing a concurrency error, while varying the number of threads (exponentially increasing the size of the state
space). This is a form of weak scaling, which demonstrates how well the resource requirements of each search algorithm
scale with the size of the input.
Fig. 4. Performance results at different thread counts for the reorder benchmark. These results reflect a general trend, in that one parameterization of hTICI
performs much better than hTI and that another provides comparable (though possibly inferior) performance. But because benchmarks like these are small
concurrency kernels, we tend to get results that are much better than what we should expect for real world applications.



R. Milewicz, P. Pirkelbauer / Computer Languages, Systems & Structures 47 (2017) 170–188178
Unfortunately, when attempting to test our approach empirically, we encounter a paradox: concurrency violations are
common, yet benchmarks of concurrency violations are scarce by comparison; this is largely due to the labor costs involved
in collecting and curating a benchmark suite. Some benchmark suites like that of Etyani and Ur [20] are constructed by
manually engineering concurrency violations into otherwise healthy code. Others like that of Pasareanu et al. [38] rely on
examples of real-world code that contain documented concurrency bugs. Finally, larger curated bug corpuses like the
Software-Artifact Infrastructure Repository (SIR) of the University of Nebraska [16] assemble mixed collections of artificially
constructed and real-world codes. Benchmark suites tend to be small (often less than 50 cases), but offer a wide range of
different kinds of software and different kinds of concurrency violations. Focusing on breadth rather than depth is preferred
when validating an analysis with respect to false/true positives and negatives. However, when comparing different analyses
in terms of resource efficiency, a shallow suite of benchmarks can be misleading. In our preliminary experiments on the
benchmarks previously mentioned, we found that our approach found bugs faster than the competition, but because our
heuristic was designed with a specific class of concurrent programs in mind, the number of benchmarks we could test on
was small, and this made the results questionable. An example of this kind of performance result can be seen in Fig. 4. We
want to avoid any unintentional cherry-picking of benchmarks.

With that in mind, we turn our attention towards mutation analysis as a solution to our benchmark problem. In the
context of software testing, mutation analysis is a method for using fault injection to measure the quality of a test suite. An
artificial defect (a mutant) is introduced into a program to be tested, and if the test suite is capable of detecting the defect,
the mutant is said to be killed, and is said to have survived otherwise. Mutations are generated according to a fault model, a
“toolkit” of program modifications that have the potential to either create havoc or to cause the behavior of a program to
deviate in subtle ways from its intended behavior. Studies by Andrew et al. [2] and Do and Rothermel [17] support the claim
that mutation-induced faults can produce realistic facsimiles of hand-crafted and real-world buggy codes. Mutation analysis
is a well-known technique within the software testing community in general and the Java development community in
particular; a comprehensive 2011 survey by Jia and Harman [30] notes over a hundred published papers concerning
mutation analysis of Java, and a 2013 survey by Delahaye and Bousquet [12] mentions that there are over ten different
mutation analysis tools for the Java language alone. Furthermore, Delmaro et al. [13], Bradbury et al. [6] and Wu and Kaiser
[52] cover mutation analysis for concurrency violations in particular. We merely need to repurpose this analysis for our use
to generate benchmarks on which to test our approach.

Our mutation analysis framework is based the ConMAn suite of mutation analysis operators for concurrent Java as seen
in Bradbury et al. [6], which was implemented using TXL, a programming language designed to support source code analysis
and source-to-source transformation tools [8–11]. We faithfully reimplemented a relevant subset of this operator suite using
the ROSE source-to-source translation infrastructure developed at the Lawrence Livermore National Laboratory (LLNL)
[40,45]. ROSE parses the input program and exposes to our tool a rich abstract syntax tree (AST) to which we can make
modifications, and the resulting AST is then unparsed by ROSE and a new, mutated program is produced. A list of the
mutation operators supported by our framework can be seen in Table 1. An auxiliary objective of this work is to explore the
effectiveness of mutation analysis for benchmark generation, and we comment on this in the results.

In order to increase the destructive potential of our framework, we introduced several new mutation operators, including
weakening strong atomic operations, and demoting atomic types to non-atomic equivalents (e.g. AtomicInteger and
Integer). We also took advantage of ROSE's robust support for the Java language to extend the functionality of certain
operators. In particular, the EAN mutation operator, which previously only handled getAndSet method for classes in the
Table 1
Mutation operators supported by our mutation analysis framework.

Mutation operator Description

MSP Modifies/replaces the parameter of a synchronized block
ESP Exchanges the parameters of two synchronized blocks
EANa Divides an atomic call (e.g. CAS) into a non-atomic set of calls
WAOb Replaces strong compare and swap operations with weak ones, and calls to set with lazySet
RSK Removes the synchronized keyword from a method
RSB Removes a synchronized block
RVK Removes the volatile keyword
RFU Removes the finally around an unlock
SKCR Shrinks a critical region
EXCR Expands a critical region
SPCR Splits a critical region into two regions
MVSB Moves a statement out of a synchronized block
RTXC Removes a thread call (wait, join, yield, etc.)
RCXC Removes call to method in concurrency object (locks, semaphores, etc.)
MXC Modifies permit count in semaphore and modify thread count in latches and barriers
RATb Replaces the atomic primitive type of a shared variable with an equivalent non-atomic primitive

a The mutation operator incorporates significant extensions that are novel.
b The mutation operator is novel to this work.



R. Milewicz, P. Pirkelbauer / Computer Languages, Systems & Structures 47 (2017) 170–188 179
java.util.concurrency package, has been expanded to handle virtually every such method, including compar-

eAndSet, addAndGet, and incrementAndAdd.
Our tool works by determining which mutations can be applied to an input program, then randomly selecting a number

of mutation operators to apply and locations in the source code on which to apply them. The tool can then be run as many
times as needed to generate the desired number of variants. For the purposes of generating benchmarks for performance,
we collected a selection of nine different data structure implementations from The Art of Multiprocessor Programming by
Herlihy and Shavit [29]. This was done for several reasons. (1) Data structures are a frequent target for the application of
model checking, (2) textbook examples of data structures tend to explore many different implementations of the same data
structure using different concurrency mechanisms (giving rise to wildly different state spaces), and (3) taking baseline
programs from the same source made it easier to formulate a one-size-fits-all test harness.

4.3. Experiments

All experiments were performed on an Intel Core 2 quad-core with an Intel Q9550 multi-processor, using version 6 of the
JPF, version 7 of the Java runtime environment, and version 3.6 of WEKA. 8 gigabytes of RAMwere made available to the Java
virtual machine, along with an additional 8 gigabytes of disk space for virtual paging.

To gather data to construct the partitioning of threads, we run the model-checker once, searching the state space by
beam search (with a width of one) in a depth-first fashion, stopping once we have observed one complete execution of the
program. We note that when using our k-means-based heuristic TICI, k¼maxð⌈

ffiffiffiffiffiffiffiffi
n=2

p
⌉;3Þ. A common rule of thumb is that

k�
ffiffiffiffiffiffiffiffi
n=2

p
, where n here is the number of threads. Here we pick k¼maxð⌈

ffiffiffiffiffiffiffiffi
n=2

p
⌉;3Þ, based on the rule and the fact that all of

the benchmarks have one master thread and two classes of worker threads. In some situations, this choice may not produce
the optimal value of k, but it would be disingenuous to present results that require prior knowledge that we do not have in
the real world.

For each data structure program, we generated three unique versions with different randomly chosen mutations induced
by our mutation analysis framework. Those that manifested a bug were kept and used for the performance tests.

For the performance experiments, we collected the execution time and states explored of each heuristic. Each of the
benchmarks was run with 4, 6, and 8 worker threads, and we varied the number of producer threads and consumer threads
Fig. 5. Results of the agreement and quality tests. In (a), the line at y¼1 indicates perfect correspondence of the k-means approach to the manual
approach, the curve below indicates the correspondence of random cluster assignments to the manual approach, and the scattered points are the results of
the experiments. In (b) and (c), we see linear trends of homogeneity and separation as a function of the number of worker threads.



R. Milewicz, P. Pirkelbauer / Computer Languages, Systems & Structures 47 (2017) 170–188180
with the restriction that there were at least two of each (e.g. 4 producers and 4 consumers, 5 producers and 3 consumers,
etc.) For the sake of clarity, results are reported separately for each combination of benchmark, thread count, and class
distributions. Each experiment was run three times and averages were taken in order to get precise timing results. For all
experiments, the model-checker was limited to generating up to 216 states. The recent history limit for both versions of
TICI and TI was set at 10, as all heuristics performed at their best at or around this value.

4.4. Results

4.4.1. Agreement and quality
First, we shall examine the results of the agreement and quality tests as depicted in Fig. 5.
According to the Rand index, the manual and k-means approaches produce extremely similar clustering results. On

average, the Rand index between the two approaches is 0.82 (that is, 82% agreement), achieving an index of 1.0 in 32% of
experiments and scoring a 0.90 or above in 42% of experiments. The index between the manual approach and random
assignment converges to 0.50 as the number of threads increases, and on average the k-means approach generously exceeds
this lower bound, which indicates that there is a statistically significant relationship the abstract information gleaned from
manual analysis of the source code and the read–write patterns taken from execution traces. However, three of the
benchmarks converge to an index of 0.50 as the number of threads increases, which indicates that our automatic approach
diverges significantly from the manual approach in these cases:

� losenotify: In this benchmark, threads attempt to communicate with one another over a shared object by calling wait or
notify methods repeatedly. They do not do any meaningful work other than this, which means that the only reads and
writes we observe are from threads checking and incrementing a local loop index variable in an identical way.

� nestedmonitor: The implementation of the buffer is hollow in that no values are actually stored or removed. The only
changes made to the data structure are to two semaphores which provide the illusion that the buffer is full or empty
depending on the number of times that the get and put methods were called. Both producers and consumers use the
same semaphores and in much the same way, which causes the read–write sequences of each thread to appear the same.

� wronglock: The code that each worker thread executes is virtually identical except for the specific locks that they seek to
acquire. Since our approach tracks frequencies of reads and writes and not the specific values that threads handle, we
cannot identify the different classes of threads.

From the perspective of our manual analysis of the source code, we can easily distinguish the worker threads according
to the tasks that they perform, but because the executions of these tasks are extremely similar, our ability to extract useful
information from the read–write patterns is limited in these cases. Finally, we observe that the k-means approach performs
better than the manual approach both in terms of homogeneity and separation. This is to be expected, because the manual
clustering results were not computed according to the read–write patterns. However, the k-means approach performs
almost as well as the manual approach and much better than random chance, which again confirms our hypothesis.

4.4.2. Benchmark generation
We will now comment upon the results of the benchmark generation process. Out of the 27 benchmarks generated by

our approach, 13 presented concurrency bugs that were detectable using the model checker, a success rate of 48%; see
Table 2 for a list of these mutants. Considering the number of different thread counts and thread distributions, this gives us
118 different test cases to use. The outcome was acceptable in that it provided us with enough benchmarks on which to do
performance tests, but we identified several ways in which the effectiveness of the approach could be improved.
Table 2
The list of benchmarks generated using mutation analysis along with the class(es) of bugs present in the program. Note that CoarseList(3) is unique in that
it has no two-thread bugs, but does have a three-thread bug.

Benchmark Mutation(s) Producer–producer bug Producer–consumer bug Consumer–consumer bug

CoarseList(1) SKCR False True False
CoarseList(2) SKCR False False True
CoarseList(3) SPCR False False False
LazyList(1) RFU False True True
LazyList(2) SKCR False True True
LazyList(3) SPCR True True True
OptimisticList(1) RFU True True True
OptimisticList(2) SKCR True True True
OptimisticList(3) SPCR True True True
LFQueueRecycle(1) EAN False False True
LFQueueRecycle(2) EAN False False True
LFQueueRecycle(3) WAO False False True
BoundedQueue(1) SPCR, EAN False False True



R. Milewicz, P. Pirkelbauer / Computer Languages, Systems & Structures 47 (2017) 170–188 181
First, applying mutations to an input program is not guaranteed to induce a concurrency violation. Some mutation
operators may fail to cause a violation, such as an ESP (parameter exchange) mutation between two synchronization blocks
where the locks are unique to each block. Others have the potential to cancel each other out, such as SKCR (shrinking a
critical region) followed by EXCR (expanding a critical region). However, misapplication of mutations could be avoided by
introducing inexpensive checks prior to their introduction; for example, before applying the ESP mutation, one could check
to see whether there are any additional uses of the parameters of the synchronization blocks, as this would indicate the
potential for the mutation to cause havoc.

Second, some mutations can be too coarse-grained to generate a violation. In particular we call to mind the SPCR

operator: it can split a critical section into two disjoint ones, but if most or all of the shared memory operations are placed
underneath an if, while, or for block, then they all get moved together, obviating a violation. It may be necessary to pair
such operators with semantics-preserving control flow mutations, such as converting “if(f(A)) { B; C; }” to “X ¼ f(A);

if(X) B; if(X) C;”.
Third, we are happy to report that the extension of the EAN operator and the introduction the WAO operator were helpful in

producing usable benchmarks. In particular, there are frequent opportunities to break up calls to atomic functions like
addAndGet, but in order to generate transformations, it was necessary to have access to type information. That is more easily
done whenworking with a framework for mature languages like ROSE rather than a framework for language prototyping like TXL.

Finally, we see that a mutation on a single piece of code can sometimes induce bugs belonging to multiple classes. When the
mutation is applied to a common piece of code like a helper function used to navigate a data structure, then all threads may be
affected. Other times, a mutation may introduce a race condition on a shared memory location that one class of threads only
reads from and that another class of threads reads from and writes to. This presents a challenge when evaluating model checking
heuristics: it is possible that one heuristic may appear better than another on a given benchmark, but it may be the case that
each is making optimal decisions yet moving towards different violations at different depths in the state space.

We note that there is an imbalance in the benchmarks that we used for testing. As can be seen in the table, 92% of the
benchmarks contain bugs that occur between threads of the same functional class, and only 51% of benchmarks involve bugs
that occur between different classes of threads, and these two categories overlap in all cases except for one, CoarseList(1).
According to our hypotheses, this should give the h�

TICI heuristic an advantage over the hþ
TICI heuristic. This happens to be

useful because the heuristics are symmetric and we get to see the range of performance outcomes that either is capable of.

4.4.3. Performance
A full listing of the results of the performance experiments can be found in the appendix. The highlights of the results of

the performance evaluation experiments are as follows:

� In 95% of tests, either h�
TICI or h

þ
TICI outperformed hTI in terms of the number of states explored to reveal a violation. This

confirms our claim that at least one version hTICI will (almost always) do better than hTI alone.
� However, whenwe break down that figure, we observe an asymmetry: h�

TICI outperforms hTI 95% of the time, but hþ
TICI only

does so 41% of the time. Moreover, hþ
TICI performs better than hTI if and only if h�

TICI performs better. This is expected due to
the imbalance in the benchmarks with respect to the classes of bugs.

� If we examine the hit rate, that is, the frequency with which each technique succeeds in finding a bug under the resource
bounds we have set, we see that hTI finds the bug 41% of the time, h�

TICI 100%, and hþ
TICI 37%.� In Fig. 7, we break down the success rate further by comparing that rate under increasingly restrictive resource bounds.

We find that while making picking the wrong coefficient for hTICI can negatively impact performance, the impact on the
quality of the results is very minor. On the other hand, the rewards for making correct choice outweigh the risks.

� Across all benchmarks, on average, hTI locates a violation after exploring 7166 states, compared to h�
TICI which does so after

exploring 1758 states and hþ
TICI , after 6897 states. That gives h�

TICI a 33% lead on hTI, and hþ
TICI a 3% disadvantage. However,

that is only if we choose to be extremely generous and ignore instances where a heuristic failed to find a bug within the
limit. If we include the failures, using the number of states explored as a conservative estimate on the actual number
needed to find the bug, we see that h�

TICI comes out on top with 1758 states explored, followed by hTI with 14001, and then
hþ
TICI with 27,144. By that measurement, h�

TICI finds bugs 7.96 times faster than hTI, and hþ
TICI 1.93 times slower.

� Across all combinations of benchmarks and thread counts, analyzing the execution trace and performing the cluster analysis
using WEKA took 96 ms on average, with a median training time of 88 ms. With respect to search time, every millisecond
spent producing the thread behavior model saved an average of 5337ms on the search when using the h�

TICI heuristic. For the
hþ
TICI heuristic, which failed to put the information to good use, lost an extra 624 ms for each millisecond of training.

From the performance data (as can be seen in Fig. 6), it is abundantly clear that the heuristic values reported by hCI are
strongly correlated with the distance to a bug, and that the combination of hCI with hTI can be a fruitful marriage. However,
we must be cautious with the results because of the issue with the sign of the correlation being unknown. If the selection of
programs was flipped with respect to the types of bugs involved, then hþ

TICI and h�
TICI would swap places in terms of the

rankings – an 8� speed-up would become a 2� slow-down and vice versa. In practice, if one version of the hTICI fails to find
a bug within a resource bound, it is likely that re-running the model checker with the other version will succeed. Similarly, it
is also possible to run more than one instance of the model checker in parallel. Alternatively, it is possible to employ
additional analyses or meta-heuristics to select the best coefficients for hTI and hCI. For example, we recommend using a



Fig. 6. A box plot of the states explored by each search strategy to find a bug in the 118 different problem instances. The graph illustrates both the tremendous
potential of incorporating data from external analyses into the model checking procedure as well as the perils involved in selecting the correct parameters.

Fig. 7. Survivorship curve for the different search strategies that we investigated. Picking a poor coefficient for hTICI can negatively impact performance, but
we are still about as likely to find a bug with hTICI as we are with hTI under the same resource bounds.

R. Milewicz, P. Pirkelbauer / Computer Languages, Systems & Structures 47 (2017) 170–188182
linear estimation-of-distribution algorithm as defined by Staunton and Clark [48], or using static analysis to make a list of
bug candidates to determine what classes of bugs are most likely present in the program. However, a treatment of that
subject goes beyond the scope of this paper.

4.4.4. Threats to validity
While we see our results as cause for celebration, we must also take them with a grain of salt. We have identified several

potential threats to the validity of our work that we must address.
First, on the subject of internal validity, the results of the evaluation of our heuristic on mutated programs are lopsided,

making it difficult to verify our twin hypotheses. By weakening synchronization constraints, our mutation analysis tends to
expose memory accesses to all threads indiscriminately, meaning that producer–consumer bugs are often introduced
alongside producer–producer and consumer–consumer bugs. Having multiple classes of bugs occurring at different depths
in the state space complicates our interpretation of the results.

Second, because the mutation analysis is unguided, we suffer from a very high rate of experimental mortality: many of
our mutated programs failed to contain a detectable bug. While we have reason to believe that our artificial bugs resemble
real-world ones, we did not determine how many buggy variants of our input programs were possible. As a result, we
cannot say for certain how representative our test cases were of the set of all possible programs.

Next, there are threats to the external validity of our work, that is, the generalizability of our techniques and our results.
First, our clustering technique only applies to a particular class of programs, programs in which we have both a division

of labor and the potential for interference between and within classes of threads. Data structures, which are ubiquitous,
often fall into this category. However, for certain canonical concurrency problems like the Dining Philosopher's problem, our
technique provides no benefit. More to the point, our approach fails when the “communication topology” between threads
cannot be linearly divided into self-similar groups.

Second, our prior analysis is inexpensive because we expect the thread behaviors to be separable in a coarse-grained
way; we only require a small number of traces and a very low-order model of the read–write patterns of threads. But as we
turn our attention to more complex varieties of concurrency bugs, we will no doubt require more and more expensive data.
This means that a rigorous cost–benefit analysis will become increasingly important.



R. Milewicz, P. Pirkelbauer / Computer Languages, Systems & Structures 47 (2017) 170–188 183
Third, we describe our work as a “refinement” of an existing heuristic. This means that the behavior and performance of
our novel heuristic are bounded by the original. In our case, the refinement translated to a geometric reduction in search time
for problems that the original heuristic was designed to handle. However, that reduction is merely forestalling the inevitable
when dealing with exponential growth in the state space; we have beaten back the darkness, but we have yet to expel it.

Finally, our approach is not completely self-contained because we require outside information to select a positive or
negative coefficient for our heuristic. Whether that outside information comes from the programmer or from another auto-
mated analysis, we are left with deferred costs that we did not consider in our evaluation. In our work, we were able to reduce
our dependency to a single bit of information, but we believe that this problem will become more pressing as we develop
more sophisticated analyses; accounting for this invisible debt will be crucial to the practical value of such a heuristic.

All these things having been said, we believe our shortcomings indicate that much work has yet to be done in this domain.
5. Related work

Rungta and Mercer [42] present a structural heuristic that uses static analysis to model calling contexts of functions to
improve upon a finite state machine distance heuristic. Pelánek et al. [39] demonstrate a simple but effective structural
heuristic that values states according to the number of reads and writes that occur in each state's recent history.

In the same vein as structural heuristics, several researchers have proposed a variety of property-independent meta-
heuristics for explicit-state model-checking. Alba and Troya [1] and Godefroid and Kurshid [24] use genetic algorithms to
selectively inject noise into the heuristic search process to flush out interesting paths and thus more efficiently identify
concurrency bugs. Seppi et al. [46] apply a Bayesian model that improves upon the values provided by a heuristic according
to a confidence estimate based on the distribution of values produced by that heuristic. Chicano and Alba [7] use ant colony
optimization techniques alongside partial-order reduction.

Many of the techniques applied in this paper are common in works involving statistical debugging and program com-
prehension. For instance, Bowring et al. [5,4] present a method based for automatic classification of program behaviors.
Aggregate statistical measures are derived from execution data and used to construct Markov models. These Markov models
are labeled according to the behaviors that are exhibited (e.g. buggy vs. clean, light-workload vs. heavy-workload), and are
then used to train classifiers to help predict and detect behaviors in future executions. The quality of these classifiers is
improved through a process of active learning: the software system iteratively collects new executions of the program,
attempts to classify the resulting data, and queries the programmer/designer to test its accuracy. This is a supervised
learning task, which presupposes that we have samples of the behaviors we interested in (in our case, property violations)
and relies on extensive human interaction to produce good results. Our approach differs in that ours is an unsupervised
learning task; we merely seek to identify similarities in the behavioral patterns of different threads without regard to the
program properties we would like to verify. Furthermore, we allow the model-checker to do all of the heavy lifting, which
minimizes the need for human intervention.
6. Conclusion and future work

In this work, we have presented a framework for mining execution traces of concurrent programs for read–write patterns
and a novel heuristic to exploit models trained on these patterns. We extended a well-established structural heuristic for
locating race conditions described in Groce and Visser [27], which seeks to schedule as many different threads as frequently
as possible, with an extension that helps ensure the fair treatment of different groups or cohorts of threads. To divide
threads into functional categories (e.g. producers and consumers), execution traces were collected and mined for read–write
patterns, expressed as Markov chain models. K-means clustering was performed on the set of these models, assigning each
thread to a group. Our experiments, which relied in part upon a novel application of a mutation analysis framework, have
shown that our refined heuristic can outperform its conventional counterpart; this is especially interesting considering that
the models were trained on relatively few inputs (just one execution trace). Our hope is that this work can serve as a model
for future explorations into the combination of model checking with other analyses.

While we see the performance results as cause to celebrate, we also understand that a geometric reduction in search
time is merely forestalling the inevitable; we have beaten back the darkness, but we have yet to expel it. For our future work,
we intend on pairing model checking with neural program analysis that provides linear time approximations of expensive
static analyses. Our preliminary results have shown that, in some cases, this combination allows us to achieve optimal search
time results at arbitrary thread counts. In tandem with this research, we are also investigating strategies for combining
distributed search with metaheuristics, in order to automatically parallelize the search process when we encounter a choice
between incommensurate alternatives as we have seen in this paper.
Appendix A. Appendix

See Table A1.



Table A1
Data gathered during performance testing. Note that time is reported in milliseconds.

Benchmark [producers,
consumers]

States explored
(TI)

Search time
(TI)

Bug found
(TI)

States explored
(TICI(�))

Search time (TICI
(�))

Bug found
(TICI(�))

States explored
(TICI(þ))

Search time (TICI
(þ))

Bug found
(TICI(þ))

Training time

BoundedQueue(1)[2,2] 12,339 8810 True 3486 2692 True 17,368 115,797 True 110
BoundedQueue(1)[2,4] 20,607 426,402 False 6096 78,354 True 29,711 351,794 False 94
BoundedQueue(1)[2,6] 18,403 583,674 False 6388 717,167 True 810 894 True 87
BoundedQueue(1)[3,3] 20,440 1,692,962 False 3931 157,157 True 23,727 404,255 False 98
BoundedQueue(1)[3,5] 18,203 682,375 False 2602 137,606 True 44,529 107,912 False 93
BoundedQueue(1)[4,2] 19,827 905,665 False 10,011 521,763 True 29,305 555,991 False 82
BoundedQueue(1)[4,4] 18,203 625,603 False 13,040 210,415 True 35,076 216,898 False 91
BoundedQueue(1)[5,3] 18,203 668,937 False 12,381 542,126 True 44,529 146,620 False 102
BoundedQueue(1)[6,2] 18,203 1,099,031 False 8684 182,320 True 54,555 409,603 False 89
CoarseList(1)[2,2] 2039 4131 True 302 443 True 4981 4059 True 572
CoarseList(1)[2,4] 338 1731 True 302 863 True 37,047 45,865 False 91
CoarseList(1)[2,6] 17,851 347,190 False 302 2458 True 43,641 477,897 False 82
CoarseList(1)[3,3] 25,117 578,083 False 302 1186 True 6917 138,052 True 79
CoarseList(1)[3,5] 16,195 503,080 False 302 2898 True 36,534 1,269,522 False 80
CoarseList(1)[4,2] 9997 174,749 True 302 307 True 14,019 179,373 True 82
CoarseList(1)[4,4] 16,747 55,190 False 302 1336 True 35,076 44,942 False 88
CoarseList(1)[5,3] 14,404 241,814 True 302 791 True 44,529 400,554 False 79
CoarseList(1)[6,2] 17,407 436,537 False 302 1460 True 54,555 1,501,443 False 79
CoarseList(2)[2,2] 2677 3283 True 2477 1386 True 4063 2226 True 200
CoarseList(2)[2,4] 1631 3051 True 1327 1612 True 31,387 68,183 False 87
CoarseList(2)[2,6] 18,402 283,893 False 1327 4470 True 43,641 1,304,429 False 83
CoarseList(2)[3,3] 21,110 1,467,323 True 1533 50,601 True 17,880 509,215 True 86
CoarseList(2)[3,5] 18,402 390,948 False 1327 8247 True 36,534 636,366 False 81
CoarseList(2)[4,2] 22,975 1,747,566 False 2477 162,474 True 31,799 254,591 False 75
CoarseList(2)[4,4] 18,402 64,886 False 1327 4027 True 35,076 43,369 False 82
CoarseList(2)[5,3] 18,402 947,608 False 1533 42,904 True 44,529 296,198 False 81
CoarseList(2)[6,2] 18,402 477,051 False 2477 1760 True 54,555 586,384 False 82
CoarseList(3)[2,2] 10,394 10,496 True 2778 1669 True 15,024 11,320 True 95
CoarseList(3)[2,4] 22,531 678,024 False 1520 1468 True 30,783 527,979 False 102
CoarseList(3)[2,6] 17,773 410,324 False 1520 1808 True 43,641 755,451 False 84
CoarseList(3)[3,3] 22,008 502,372 False 1726 1853 True 26,849 346,664 False 78
CoarseList(3)[3,5] 17,773 285,630 False 1520 1516 True 36,534 513,838 False 81
CoarseList(3)[4,2] 21,996 550,652 False 2778 3311 True 31,524 711,480 False 83
CoarseList(3)[4,4] 17,773 256,982 False 1520 400,230 True 35,076 387,361 False 81
CoarseList(3)[5,3] 17,773 325,397 False 1726 249,433 True 44,529 616,146 False 81
CoarseList(3)[6,2] 17,773 626,370 False 2778 128,208 True 54,515 811,327 False 81
LazyList(1)[2,2] 3824 5047 True 520 459 True 518 463 True 144
LazyList(1)[2,4] 1117 2999 True 520 1776 True 3053 4652 True 101
LazyList(1)[2,6] 18,403 516,003 False 520 1626 True 8757 321,183 True 84
LazyList(1)[3,3] 1117 4502 True 520 657 True 2635 2047 True 87
LazyList(1)[3,5] 18,403 475,367 False 539 1394 True 35,076 567,269 False 85
LazyList(1)[4,2] 1117 129,129 True 1013 1381 True 51,815 231,032 False 81
LazyList(1)[4,4] 18,403 63,060 False 539 784 True 44,529 240,515 False 86
LazyList(1)[5,3] 18,403 546,168 False 539 20,413 True 54,555 334,757 False 88
LazyList(1)[6,2] 18,403 1,150,406 False 1013 2553 True 55,021 453,535 False 88
LazyList(2)[2,2] 486 445 True 402 410 True 105 182 True 183
LazyList(2)[2,4] 340 540 True 402 506 True 105 159 True 82
LazyList(2)[2,6] 18,403 449,758 False 402 1091 True 105 745 True 72

R
.M

ilew
icz,P.Pirkelbauer

/
Com

puter
Languages,System

s
&

Structures
47

(2017)
170

–188
184



LazyList(2)[3,3] 1109 1584 True 402 922 True 303 281 True 88
LazyList(2)[3,5] 18,403 703,921 False 402 617 True 303 534 True 76
LazyList(2)[4,2] 2889 74,069 True 402 498 True 571 672 True 81
LazyList(2)[4,4] 18,403 81,715 False 402 731 True 571 463 True 80
LazyList(2)[5,3] 18,403 1,321,258 False 402 559 True 572 517 True 93
LazyList(2)[6,2] 18,403 946,077 False 402 548 True 584 974 True 88
LazyList(3)[2,2] 522 490 True 544 534 True 2400 1402 True 159
LazyList(3)[2,4] 4140 4970 True 544 493 True 30,251 63,584 False 98
LazyList(3)[2,6] 18,403 773,327 False 544 2237 True 43,641 209,642 False 90
LazyList(3)[3,3] 4140 4290 True 544 29,628 True 11,532 541,417 True 86
LazyList(3)[3,5] 18,403 834,170 False 544 1,009,415 True 36,534 1,133,228 False 89
LazyList(3)[4,2] 4140 16,533 True 544 701 True 33,189 591,499 False 86
LazyList(3)[4,4] 18,403 282,820 False 544 4776 True 35,076 202,003 False 90
LazyList(3)[5,3] 18,403 747,438 False 544 1121 True 44,529 730,606 False 90
LazyList(3)[6,2] 18,403 1,536,713 False 544 32,969 True 54,555 583,256 False 91
LFQueueRecycle(1)[2,2] 6378 5626 True 2096 1035 True 5606 4643 True 98
LFQueueRecycle(1)[2,4] 2423 34,480 True 2449 1598 True 26,300 45,781 True 92
LFQueueRecycle(1)[2,6] 13,255 434,181 True 3119 2305 True 43,641 886,456 False 83
LFQueueRecycle(1)[3,3] 10,079 729,413 True 2302 17,261 True 4428 52,425 True 91
LFQueueRecycle(1)[3,5] 13,987 279,102 True 2838 2291 True 36,534 343,469 False 84
LFQueueRecycle(1)[4,2] 20,983 1,244,991 False 2086 2023 True 31,862 320,102 False 76
LFQueueRecycle(1)[4,4] 14,092 505,119 True 2748 50,749 True 35,076 869,680 False 92
LFQueueRecycle(1)[5,3] 15,492 2,335,505 False 2388 77,587 True 44,529 588,172 False 84
LFQueueRecycle(1)[6,2] 15,546 838,060 False 2170 823,887 True 54,555 524,135 False 82
LFQueueRecycle(2)[2,2] 6220 14,381 True 2096 1012 True 5470 3407 True 91
LFQueueRecycle(2)[2,4] 2423 10,384 True 2609 1609 True 26,270 371,379 True 89
LFQueueRecycle(2)[2,6] 13,255 310,640 True 3339 175,539 True 43,641 622,184 False 82
LFQueueRecycle(2)[3,3] 10,117 110,954 True 2302 1595 True 4428 33,939 True 79
LFQueueRecycle(2)[3,5] 13,987 453,258 True 2998 82,671 True 36,534 298,997 False 83
LFQueueRecycle(2)[4,2] 21,232 745,431 False 2086 3724 True 32,012 2,605,639 False 75
LFQueueRecycle(2)[4,4] 14,092 494,732 True 2748 2273 True 35,076 466,235 False 83
LFQueueRecycle(2)[5,3] 15,401 1,829,008 True 2388 53,890 True 44,529 460,334 False 84
LFQueueRecycle(2)[6,2] 15,597 642,855 False 2170 11,302 True 54,555 805,498 False 82
LFQueueRecycle(3)[2,2] 6219 4090 True 2096 1014 True 5470 3339 True 88
LFQueueRecycle(3)[2,4] 2423 6142 True 2449 1526 True 26,270 279,498 True 87
LFQueueRecycle(3)[2,6] 13,255 185,619 True 3119 80,904 True 43,641 1,034,928 False 82
LFQueueRecycle(3)[3,3] 10,117 72,167 True 2302 2784 True 4428 3388 True 80
LFQueueRecycle(3)[3,5] 13,987 182,481 True 952 711 True 55,021 494,258 False 83
LFQueueRecycle(3)[4,2] 21,232 562,869 False 2086 157,830 True 32,012 1,462,141 False 76
LFQueueRecycle(3)[4,4] 14,092 494,235 True 2748 2506 True 35,076 904,415 False 83
LFQueueRecycle(3)[5,3] 15,401 2,109,415 True 2388 141,480 True 44,529 415,044 False 83
LFQueueRecycle(3)[6,2] 15,597 967,969 False 2170 1609 True 54,555 665,017 False 82
OptimisticList(1)[2,2] 2751 2033 True 477 418 True 405 349 True 114
OptimisticList(1)[2,4] 20,285 369,248 False 477 814 True 3314 72,411 True 98
OptimisticList(1)[2,6] 18,392 416,107 False 477 2157 True 10,901 854,558 True 98
OptimisticList(1)[3,3] 20,023 4,549,608 False 771 21,474 True 4596 509,153 True 87
OptimisticList(1)[3,5] 18,403 239,829 False 771 26,514 True 25,987 249,076 False 87
OptimisticList(1)[4,2] 1377 12,828 True 771 997 True 12,532 117,086 True 88
OptimisticList(1)[4,4] 18,403 190,248 False 771 844 True 24,285 905,816 False 88
OptimisticList(1)[5,3] 18,403 419,590 False 717 1033 True 25,879 774,329 False 91
OptimisticList(1)[6,2] 18,403 613,510 False 717 1490 True 23,866 1,510,040 False 93
OptimisticList(2)[2,2] 1801 1228 True 452 357 True 388 323 True 115
OptimisticList(2)[2,4] 1378 8929 True 787 655 True 6065 7458 True 105
OptimisticList(2)[2,6] 18,403 257,124 False 787 780 True 15,541 229,774 True 92

R
.M

ilew
icz,P.Pirkelbauer

/
Com

puter
Languages,System

s
&

Structures
47

(2017)
170

–188
185



Table A1 (continued )
OptimisticList(2)[3,3] 15,701 654,240 True 769 247,277 True 4755 3799 True 144
OptimisticList(2)[3,5] 18,403 944,612 False 769 7105 True 4802 129,271 True 96
OptimisticList(2)[4,2] 1382 2596 True 717 774 True 1088 1116 True 94
OptimisticList(2)[4,4] 18,403 319,009 False 717 905 True 28,601 295,123 False 89
OptimisticList(2)[5,3] 18,403 311,888 False 717 963 True 25,879 316,256 False 91
OptimisticList(2)[6,2] 18,403 1,060,525 False 717 5255 True 23,866 675,986 False 91
OptimisticList(3)[2,2] 8512 5640 True 1294 1568 True 17,250 8882 True 106
OptimisticList(3)[2,4] 20,285 65,053 False 1310 1036 True 35,176 140,228 False 106
OptimisticList(3)[2,6] 18,392 1,552,430 False 1310 216,606 True 42,976 204,678 False 92
OptimisticList(3)[3,3] 20,010 824,431 False 1194 1921 True 46,873 138,862 False 99
OptimisticList(3)[3,5] 18,403 254,264 False 1194 1322 True 63,214 190,377 False 94
OptimisticList(3)[4,2] 20,087 751,594 False 1142 19,704 True 30,887 426,292 False 88
OptimisticList(3)[4,4] 18,403 218,612 False 1142 1165 True 43,493 200,850 False 97
OptimisticList(3)[5,3] 18,403 1,403,409 False 1142 8434 True 29,404 316,328 False 100
OptimisticList(3)[6,2] 18,403 1,478,386 False 1142 1954 True 32,055 276,242 False 101

R
.M

ilew
icz,P.Pirkelbauer

/
Com

puter
Languages,System

s
&

Structures
47

(2017)
170

–188
186



R. Milewicz, P. Pirkelbauer / Computer Languages, Systems & Structures 47 (2017) 170–188 187
References

[1] Alba E, Troya JM. Genetic algorithms for protocol validation. In: Parallel problem solving from nature—PPSN IV. Springer; 1996. p. 869–79.
[2] Andrews JH, Briand LC, Labiche Y. Is mutation an appropriate tool for testing experiments? In: Proceedings of the 27th international conference on

software engineering. ACM; 2005. p. 402–11.
[3] Bhadra J, Abadir MS, Wang LC, Ray S. A survey of hybrid techniques for functional verification. IEEE Des Test Comput 2007;(2):112–22.
[4] Bowring JF, Harrold MJ, Rehg JM. Improving the classification of software behaviors using ensembles of control-flow and data-flow classifiers.

Technical report GIT-CERCS-05-10. Georgia Institute of Technology; 2005.
[5] Bowring JF, Rehg JM, Harrold MJ. Active learning for automatic classification of software behavior. In: ACM SIGSOFT software engineering notes, vol.

29. ACM; 2004. p. 195–205.
[6] Bradbury JS, Cordy JR, Dingel J. Mutation operators for concurrent java (j2se 5.0). In: Second workshop on mutation analysis, 2006. IEEE; 2006. p. 11.
[7] Chicano F, Alba E. Ant colony optimizationwith partial order reduction for discovering safety property violations in concurrent models. Inf Process Lett

2008;106(6):221–31.
[8] Cordy JR. Txl—a language for programming language tools and applications. In: Electronic notes in theoretical computer science, vol. 110; 2004. p. 3–

31.
[9] Cordy JR. The txl source transformation language. Sci Comput Program 2006;61(3):190–210.
[10] Cordy JR, Dean TR, Malton AJ, Schneider KA. Source transformation in software engineering using the txl transformation system. Inf Softw Technol

2002;44(13):827–37.
[11] Cordy JR, Halpern-Hamu CD, Promislow E. Txl: a rapid prototyping system for programming language dialects. Comput Lang 1991;16(1):97–107.
[12] Delahaye M, Du Bousquet L. A comparison of mutation analysis tools for java. In: 2013 13th international conference on quality software (QSIC). IEEE;

2013. p. 187–95.
[13] Delamaro M, Pezze M, Vincenzi AM, Maldonado JC. Mutant operators for testing concurrent java programs. In: Brazilian symposium on software

engineering; 2001. p. 272–85.
[14] Détienne F. Expert programming knowledge: a schema-based approach. arXiv preprint cs/0702003; 2007.
[15] Dickinson W, Leon D, Podgurski A. Finding failures by cluster analysis of execution profiles. In: Proceedings of the 23rd international conference on

software engineering. IEEE Computer Society; 2001. p. 339–48.
[16] Do H, Elbaum S, Rothermel G. Supporting controlled experimentation with testing techniques: an infrastructure and its potential impact. Empir Softw

Eng 2005;10(4):405–35.
[17] Do H, Rothermel G. A controlled experiment assessing test case prioritization techniques via mutation faults. In: Proceedings of the 21st IEEE

international conference on software maintenance, 2005. ICSM'05. IEEE; 2005. p. 411–20.
[18] El-Ramly M, Stroulia E, Sorenson P. Recovering software requirements from system-user interaction traces. In: Proceedings of the 14th international

conference on software engineering and knowledge engineering. ACM; 2002. p. 447–54.
[19] Engler D, Musuvathi M. Static analysis versus software model checking for bug finding. In: Verification, model checking, and abstract interpretation.

Springer; 2004. p. 191–210.
[20] Eytani Y, Ur S. Compiling a benchmark of documented multi-threaded bugs. In: Proceedings of 18th international parallel and distributed processing

symposium, 2004. IEEE; 2004. p. 266.
[21] Farchi E, Nir Y, Ur S. Concurrent bug patterns and how to test them. In: Proceedings of international parallel and distributed processing symposium,

2003. IEEE; 2003. p. 7.
[22] Flanagan C, Godefroid P. Dynamic partial-order reduction for model checking software. In: ACM sigplan notices, vol. 40. ACM; 2005. p. 110–21.
[23] Fu Q, Lou JG, Wang Y, Li J. Execution anomaly detection in distributed systems through unstructured log analysis. In: Ninth IEEE international

conference on data mining, 2009. ICDM'09. IEEE; 2009. p. 149–58.
[24] Godefroid P, Khurshid S. Exploring very large state spaces using genetic algorithms. In: Tools and algorithms for the construction and analysis of

systems. Springer; 2002. p. 266–80.
[25] Godefroid P, Nagappan N. Concurrency at microsoft: an exploratory survey. In: CAV workshop on exploiting concurrency efficiently and correctly;

2008.
[26] Groce A, Visser W. Model checking java programs using structural heuristics. In: ACM SIGSOFT software engineering notes, vol. 27. ACM; 2002. p. 12–

21.
[27] Groce A, Visser W. Heuristics for model checking java programs. Int J Softw Tools Technol Transf 2004;6(4):260–76.
[28] Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The weka data mining software: an update. ACM SIGKDD Explor Newslett 2009;11

(1):10–8.
[29] Herlihy M, Shavit N. The art of multiprocessor programming, Revised Reprint. Elsevier; 2012.
[30] Jia Y, Harman M. An analysis and survey of the development of mutation testing. IEEE Trans Softw Eng 2011;37(5):649–78.
[31] Jiang L, Su Z. Context-aware statistical debugging: from bug predictors to faulty control flow paths. In: Proceedings of the twenty-second IEEE/ACM

international conference on automated software engineering. ACM; 2007. p. 184–93.
[32] Kaufman L, Rousseeuw PJ. Finding groups in data: an introduction to cluster analysis, vol. 344. John Wiley & Sons; 2009.
[33] Kuhn A, Ducasse S, Girba T. Semantic clustering: identifying topics in source code. Inf Softw Technol 2007;49(3):230–43.
[34] Lloyd S. Least squares quantization in pcm. IEEE Trans Inf Theory 1982;28(2):129–37.
[35] Lu S, Park S, Seo E, Zhou Y. Learning from mistakes: a comprehensive study on real world concurrency bug characteristics. In: Proceedings of the 13th

international conference on architectural support for programming languages and operating systems. ASPLOS XIII. New York, NY, USA: ACM; 2008. p.
329–39. 〈http://doi.acm.org/10.1145/1346281.1346323〉.

[36] Magee J, Kramer J. State models and java programs. Wiley; 1999.
[37] Mancoridis S, Mitchell BS, Rorres C, Chen Y, Gansner ER. Using automatic clustering to produce high-level system organizations of source code. In:

International conference on program comprehension. IEEE Computer Society; 1998. p. 45.
[38] Păsăreanu CS, Dwyer MB, Visser W. Finding feasible abstract counter-examples. Int J Softw Tools Technol Transf 2003;5(1):34–48.
[39] Pelánek R, Rosecky` V, Moravec P. Complementarity of error detection techniques. In: Electronic notes in theoretical computer science, vol. 220, no. 2;

2008. p. 51–65.
[40] Quinlan D. Rose: compiler support for object-oriented frameworks. Parallel Process Lett 2000;10(02n03):215–26.
[41] Rand WM. Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 1971;66(336):846–50.
[42] Rungta N, Mercer EG. A context-sensitive structural heuristic for guided search model checking. In: Proceedings of the 20th IEEE/ACM international

conference on automated software engineering. ACM; 2005. p. 410–3.
[43] Rungta N, Mercer EG. Hardness for explicit state software model checking benchmarks. In: Fifth IEEE international conference on Software engi-

neering and formal methods, 2007. SEFM 2007. IEEE; 2007. p. 247–56.
[44] Safyallah H, Sartipi K. Dynamic analysis of software systems using execution pattern mining. In: 14th IEEE international conference on program

comprehension, 2006. ICPC 2006. IEEE; 2006. p. 84–88.
[45] Schordan M, Quinlan D. A source-to-source architecture for user-defined optimizations. In: JMLC'03: joint modular languages conference. Lecture

notes in computer science, vol. 2789. Springer-Verlag; August 2003. p. 214–23.
[46] Seppi K, Jones M, Lamborn P. Guided model checking with a Bayesian meta-heuristic. Fundam Inf 2006;70(1):111–26.
[47] Sistla AP. Employing symmetry reductions in model checking. Comput Lang Syst Struct 2004;30(3):99–137.

http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref7
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref7
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref7
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref9
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref9
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref10
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref10
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref10
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref11
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref11
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref16
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref16
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref16
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref27
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref27
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref28
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref28
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref28
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref30
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref30
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref33
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref33
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref34
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref34
http://doi.acm.org/10.1145/1346281.1346323
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref36
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref38
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref38
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref40
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref40
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref41
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref41
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref46
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref46
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref47
http://refhub.elsevier.com/S1477-8424(16)30079-3/sbref47


R. Milewicz, P. Pirkelbauer / Computer Languages, Systems & Structures 47 (2017) 170–188188
[48] Staunton J, Clark JA. Finding short counterexamples in promela models using estimation of distribution algorithms. In: Proceedings of the 13th annual
conference on genetic and evolutionary computation. ACM; 2011. p. 1923–30.

[49] Visser W, Păsăreanu CS, Khurshid S. Test input generation with java pathfinder. In: ACM SIGSOFT software engineering notes, vol. 29, no. 4; 2004. p.
97–107.

[50] Welles O, Kodar O. F for fake; 1974.
[51] Wolpert DH, Macready WG. No free lunch theorems for search. Technical report. Technical report SFI-TR-95-02-010. Santa Fe Institute; 1995.
[52] Wu LL, Kaiser GE. Constructing subtle concurrency bugs using synchronization-centric second-order mutation operators; 2011.


	Refinement of structural heuristics for model checking of concurrent programs through data mining
	Introduction
	Background
	Structural Heuristics
	Cluster analysis

	Implementation
	Data collection
	Clustering
	Developing heuristics

	Evaluation
	Agreement and quality of cluster analysis
	Benchmark generation and performance tests
	Experiments
	Results
	Agreement and quality
	Benchmark generation
	Performance
	Threats to validity


	Related work
	Conclusion and future work
	Appendix
	References




